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Abstract

In the context of extracting maximal item sets and association rules from a binary
data base, the graph-theoretic notion of domination was recently used to charac-
terize the neighborhood of a concept in the corresponding lattice.

In this paper, we show that the notion of domination can in fact be extended to
any closure operator on a finite universe and be efficiently encoded into propositional
Horn functions. This generalization enables us to endow notions and algorithms
related to Formal Concept Analysis with Horn minimization and minimal covers of
functional dependencies in Relational Databases.

1 Introduction

The massive amounts of data which are currently being accumulated world-
wide make it important to find fast algorithms to sift through the databases,
or new techniques to avoid scanning the whole base. One of the approaches
is to factorize the data, in order to minimise the size occupied by relevant
information as well as the time required for searches.

In this data mining context, recent works by Wille (32) and Ganter (17) use
Formal Concept Analysis to investigate concepts, which are maximal rectan-
gles of a binary relation and correspond to a maximal factorization of item
sets; this is used in a combinatorial approach for extracting patterns from a
database. Concept lattices stem from Galois lattices, which have been studied
for a long time (7), for example in the context of Social Sciences (1), but Wille
and Ganter’s work has introduced new perspectives and applications. The use
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of concept lattices is rapidly emerging in many areas related to Artificial In-
telligence and Data Mining, such as Database Management (see e.g. (23)),
organization of object hierarchies (see e.g. (22)), machine learning (see e.g.
(26)) and frequent set generation (see e.g. (19)).

Equally important, the related problem of rule generation, which corresponds
to finding functional dependencies in databases, is of major importance in data
analysis, for wide-spread applications such as behavioral prediction, artificial
intelligence, modelization of genomic phenomena, and so forth. Recent work
has been done by Maier (25) in the theory of Relational Databases to define
a minimal set of functional dependencies and simultaneously by Guigues and
Duquenne (20) in Formal Concept Analysis to define a canonical basis of ex-
act association rules. Mathematical investigation has shown that concepts as
well as rules are associated with several mutually inclusive closure lattices.
These lattices are potentially of exponential size, and as there may be even
more rules than there are concepts, efficient algorithmic techniques are ac-
tively being sought to deal with these problems. An interesting breakthrough
was initiated by Bordat (8) when remarking that in order to generate the
neighbors of a given concept in the lattice, no information on other concepts
is required. However, state of the art rule generation algorithms require, in
order to generate one rule, information on all previously generated rules, a set
which it is not always feasible to handle.

Our general purpose in this mathematical-oriented paper is to study various
relationships between different formal approaches, in view of using mathe-
matical and/or algorithmic results which stem from various fields of discrete
mathematics. Several approaches have been proposed very recently in this di-
rection. The Rough Set approach explored the relationships between functional
dependencies and mining of prime implicants of discernability functions. Dis-
cernability functions are based on approximation operators which are special
cases of disjunctive closure operators. SanJuan in (31) used Heyting algebras
to modelize and generalize this concept of approximation operators. In the
finite case, Bioch and Ibaraki in (6) use generalized monotone Boolean func-
tions for the same purpose. However, all the algebraic structures defined to
deal with approximation operators are based on distributive lattices. On the
other hand, functional dependencies induce general (i.e. not necessarily dis-
junctive) closure operators and arbitrary lattices, as the class of Horn functions
in Logical Analysis of Data and Galois Lattices in Formal Concept Analysis.
The Rough Sets and Formal Concept Analysis approaches are compared in
(30).

In this paper, we focus on general finite closure operators and their underlying
finite lattices. Berry and Sigayret in (3) proposed a representation of a concept
lattice by a graph, where the graph-related notions of domination and max-
mods were used, as well as that of minimal separation. Bordat’s results (8)
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were explained and extended, the cover of a concept characterized using only
local information. This work established a relationship between graph theory
and concept lattices, and was rewarded by immediate algorithmic results in
terms of concept generation analysis at least as good as that of the best such
algorithms (5).

In this paper, we show that we can extend the notion of domination to any
closure operator defined on a finite universe U . This develops into new inter-
esting algorithmic approaches for generating lattices related to implicational
systems or canonical covers of functional dependencies in Relational Database.

The paper is organized as follows: Section 2 gives preliminaries on Galois and
concept lattices, Section 3 explains previous work on the relationship between
graphs and lattices, Section 4 extends the corresponding results to a general
closure system, Section 5 interprets our results from Section 4 in a logical-
based fashion, and Section 6 deals with the logical aspects of rule generation.

2 Preliminaries

We will first give some preliminaries on binary relations and the associated
lattice. In this field, there are two main approaches with many notions in
common: Galois lattices and concept lattices. We will present both aspects
in this preliminary section, although in the rest of the paper we will refer to
concept lattices.

2.1 Maximal rectangles, contexts and concepts

Given a finite set P of ”properties” or ”attributes” (which we will denote by
lowercase letters) and a finite set O of ”objects” or ”tuples” (which we will
denote by numbers), we will consider a binary relation R as a proper subset of
the Cartesian product P×O; we will refer to the triple (P,O, R) as a context.

Given a subset X of P and a subset X ′ of O, the set R ∩ (X × X ′) is a
subrelation of R, which we will denote by R(X, X ′).

Definition 2.1 Given a context C = (P,O, R), a concept or closed set of
C, also called a maximal rectangle of R, is a subproduct A×B ⊆ R such that
∀x ∈ O − B, ∃y ∈ A | (y, x) 6∈ R, and ∀x ∈ P − A, ∃y ∈ B | (x, y) 6∈ R. A is
called the intent of the concept, B is called the extent.

Example 2.2 Binary relation R for our running example:
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Property set:

P = {a, b, c, d, e, f, g, h}

Object set:

O = {1, 2, 3, 4, 5, 6}

R ⊆ P ×R

R a b c d e f g h

1 × × × ×

2 × × × × ×

3 × × × × ×

4 × ×

5 × × ×

6 × ×

In this relation, ah × 236 and bc × 125 are maximal rectangles (or concepts)
of R. bc is the intent of rectangle bc × 125, and 125 its extent.

2.2 Concept lattices

A lattice is a partially ordered set in which every pair {X, Y } of elements
has both a lowest upper bound (denoted by join(X, Y )) and a greatest lower
bound, (denoted by meet(X, Y )). We represent a lattice by the Hasse diagram
of the partial ordering on the elements: transitivity and reflexivity edges are
omitted. The reader is referred to the classical work of (7) for basic results on
lattices. An element Y is said to cover an element X if X < Y and there is
no intermediate element Z such that X < Z < Y . The set of elements which
cover an element X is called the cover of X.

Given a context C = (P,O, R), the concepts of C, ordered by inclusion on
the intents, define a lattice, called a Galois lattice or concept lattice, which is
usually represented with an ordering on the intents from bottom to top. We
will denote this lattice by L(R). An element B×B ′ is said to be a descendant
of element A × A′ if A ⊂ B. B × B′ is said to cover (to be a successor of)
A × A′ if A ⊂ B and there is no element C × C ′ such that A ⊂ C ⊂ B.

This lattice may be of exponential size, as it may scan the power set of P or of
O. Such a lattice, sometimes referred to as a complete lattice, has a smallest
element, called the bottom element, and a greatest element, called the top
element. The elements which cover the bottom element are called atoms.

This lattice has special properties:

Property 2.3 Each element X is the bottom element of a sublattice which
contains its descendants.

Property 2.4 (5) For each element x ∈ P, the subset of elements containing
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x defines a sublattice of L(R); we will call the bottom element of this sublattice
the introducer of x.

Example 2.5 The lattice L(R) of relation R in Example 2.2 is given in Fig-
ure 1. In elements which are introducers of a property, this property is rep-
resented in bold. The atoms of L(R) are: ah × 236, b × 1235 and d × 145.
The introducer of c is element bc× 125. The sublattice defined by the elements
containing c is given in Figure 2.

φ   x 123456

ab h x 23

  x 1235

b  x 125

abcgh x 2ab gh x 3

abcdefgh x φ

bcde x 1

bcd x 15

d  x 14

  x 145   x 236ah
b

d

c

e

f

g

Fig. 1. Concept lattice L(R) of relation R of Example 2.2. In elements which are
property introducers, the introduced properties are represented in bold.

abcdefgh x φ

abcgh x 2

bcde x 1

bc x 125

bcd x 15

Fig. 2. Sublattice of the elements containing c of lattice L(R) of Figure 1.

3 Relationships between domination and concepts

3.1 An underlying graph

Our approach to handling a concept lattice (see (3)) is to encode the relation
by an underlying graph GR, constructed on the complement of the relation,
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defined, for a given context (P,O, R) as GR = (V, E), with V = P ∪ O, and
with edges defined as:

(1) internal edges which make P and O into cliques (xy ∈ E if x, y ∈ P or if
x, y ∈ O).

(2) external edges: for x ∈ P and y ∈ O, xy ∈ E iff (x, y) /∈ R.

Example 3.1 Figure 3 gives the graph which corresponds to the relation from
Example 2.2.

a
b
c
d
e
f
g
h 6

5

4

3

2

1

Fig. 3. Graph GR coding relation R from Example 2.2.

The reason we define this graph is that we have the remarkable property that a
vertex set S of GR is a minimal separator of GR, separating connected compo-
nent A from connected component A′ if and only if A×A′ is a concept defined
by relation R (see (3) for details on minimal separators and this relationship).
This leads to interesting results, because much recent work on graphs has been
done on minimal separation, with results on efficient separator generation and
on separator decomposition.

Although in this paper we do not need to go into details about these graph
results, we will use some vocabulary such as ‘neighborhood’, ‘domination’ and
‘maxmods’ which stems from graph theory; we thus usually denoted by N+(x)
the external neighborhood of vertex x in graph GR: for x ∈ P, N+(x) = {y ∈
O|(x, y) 6∈ R}, and for x ∈ O, N+(x) = {y ∈ P|(y, x) 6∈ R}.

In this paper, we will only need to use the neighborhood of the complement,
thus, instead of the graph notation N

+
(X), we will use notation R[X]:

Definition 3.2 Given a context (P,O, R), for any subset X of P or O, we
will define:

• R[X] = {y ∈ O : ∀x ∈ X, (x, y) ∈ R} if X ⊆ P,
• R[X] = {y ∈ P : ∀x ∈ X, (y, x) ∈ R} if X ⊆ O.

We will denote R[R[X]] by R2[X]. R[{x}] will be denoted R[x] for short.

Using this notation, we can describe the maximal rectangles as: R2[X]×R[X],
for X ⊆ P.
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3.2 Domination and maxmods in a context

A concept A × A′ is uniquely defined by its intent A, since A′ = R[A]; in the
rest of this section, we will accordingly refer only to intents, i.e. to subsets of
P.

One of the related graph notions which turns out to be of primary importance
for the study of concept lattices is that of vertex domination: in a graph, a
vertex x is said to dominate another vertex y if N+(y) ⊂ N+(x). In this paper,
we will transpose this definition using notation R[ ]:

Definition 3.3 Let (P,O, R) be a context, let x, y be in P; we say that x
dominates y if R[x] ⊆ R[y]

Example 3.4 In our example, R[{b, c}] = {1, 2, 5}.

In (3) domination is used to define a pre-order on P. With this pre-order are
associated equivalence classes called maxmods (a short for the graph term
’maximal clique module’), which led to the quotient order of this pre-order
defining domination between maxmods:

Definition 3.5 (3) Let (P,O, R) be a context; we will say that X ⊆ P is a
maxmod of R if ∀x, y ∈ X, R[x] = R[y] and X is maximal for this property.
We say that a maxmod X dominates a maxmod Y 6= X if R[X] ⊂ R[Y ].

Property 3.6 (3) Let X and Y be maxmods; then X ⊂ Y iff Y dominates
X. Domination between maxmods defines a partial order.

Example 3.7 In Example 2.2, the maxmods are: {a, h}, {b}, {c}, {d}, {e},
{f} and {g}. {b} is a non-dominating maxmod; {c} dominates {b}; {d} is
non-dominating; {e} dominates {d}; {a, h} is non-dominating; {g} dominates
{a, h} and {b}; {f} dominates {a, h}, {b} and {g}.

The maxmods can be computed in O(|P ∪ O| − |R|) time (see (3)).

One of the ways of computing the partition into maxmods is to use a partition
refinement technique, based on a famous graph algorithm called LexBFS (29)
which was originally designed to recognize chordal graphs: start with P and
repeatedly choose an object i, and use R[i] to split the classes of the current
partition into neighbors and non-neighbors of i; if at each step the subclass of
elements in R[i] is put to the left of the subclass of non-elements, then at the
end, a partition into maxmods is obtained, with the interesting property that
a given maxmod X can dominate only maxmods which lay to the left of X in
the partition. This process is described in detail in (5).
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Example 3.8 Figure 4 illustrates the partition refinement based on LexBFS
from Example 2.2.
The ordered partition into maxmods obtained is ({b}, {c}, {d} {e} {ah} {g}
{f}). With Example 3.7 we can verify that a maxmod dominates no maxmod
which is after it in this list.

Properties can be used in a similar fashion to split the partition, this time
using the intent of the introducer corresponding to a given property, as shown
in Figure 5.

abcdefgh

↓ R[1] = {b, c, d, e}

bcde | afgh

↓ R[2] = {a, b, c, g, h}

bc | de | agh | f

↓ R[3] = {a, b, f, g, h}

b | c | de | agh | f

↓ R[4] = {d, e}

b | c | de | agh | f

↓ R[5] = {b, c, d}

b | c | d | e | agh | f

↓ R[6] = {a, h}

b | c | d | e | ah | g | f

Fig. 4. Partition refinement based on LexBFS (see Example 3.8).

The maxmods turn out to be closely related to the introducers: the partial
ordering on maxmods has the same structure as the suborder defined by the
concept lattice restricted to the introducers.

Property 3.9 (4) A concept with intent A ⊆ P is an introducer iff there is a
maxmod X ⊆ P such that X ⊆ A and A−X is the union of all the maxmods
dominated by X.

A similar result holds for extents and object maxmods.

Example 3.10 Figure 6 gives the domination ordering on maxmods corre-
sponding to the relation of Example 2.2. Concept abgh × 23 is the introducer
of g. {g} is a maxmod and dominates {a, h} and {b}. Concept abfgh × 3 is
the introducer of f . {f} is a maxmod and dominates {g}, {a, h}, and {b}.
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abcdefgh

↓ a : {a, h}

ah | bcdefgh

↓ b : {b}

ah | b | cdefg

↓ c : {b, c}

ah | b | c | defg

↓ d : {d}

ah | b | c | d | efg

↓ e : {d, e}

ah | b | c | d | e | fg

↓ f : {a, b, f, g, h}

ah | b | c | d | e | fg

↓ g : {a, b, g, h}

ah | b | c | d | e | g | f

↓ h : {a, h}

ah | b | c | d | e | g | f

Fig. 5. Partition refinement based on the intents of the introducers (see Exam-
ple 3.8).

f

g

d

c

b{a,h}

e

Fig. 6. The domination ordering on maxmods for Relation R from Example 2.2.

This ordering has interesting applications: when the number of elements of the
lattice is exponential, several authors ((18), (13), (22)) have found it useful
to further simplify this lattice into a Galois subhierarchy, by using the sub-
order induced by the introducers (using introducers for both properties and
objects), which has a polynomial number of elements; its properties have been
investigated in several applications such as UML representations and handling
object-oriented hierarchies. In (4), Berry and Sigayret show how to efficiently
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maintain such a subhierarchy by decomposing it into two partially ordered
sets of introducers: one for introducers of properties and one for introducers
of objects.

Bordat in (8) used the fact that, for any concept A × A′, the sublattice of
which A × A′ is the bottom element is isomorphic to the concept lattice of a
subrelation of R:

Theorem 3.11 Let (P,O, R) be a context, let A × A′ be a concept. The el-
ements which contain A in their intent define a sublattice of L(R) which is
isomorphic to the lattice of relation R(P−A, A′). We will refer to R(P−A, A′)
as Bordat’s subrelation related to A.

We use the notion of maxmod and the results from (8) to present the following
theorem, which uses the Bordat’s subrelation to define the cover of an arbitrary
element of the lattice.

Theorem 3.12 (3) Concept B × B ′ covers a concept A × A′ iff B − A is a
non-dominating maxmod in R((P − A), R[A]).

This is algorithmically interesting, because it enables a local approach. How-
ever, when generating all the concepts, the idea that domination is inherited
as one moves up in the lattice avoids a complete re-computation of the domi-
nation order, thus yielding an interesting time and space complexity (5):

Property 3.13 Let A and B be concepts, with A ⊂ B, let x and y be proper-
ties which are not in B. Then if x dominates y in Bordat’s subrelation related
to element A, x also dominates y in Bordat’s subrelation related to element
B.

4 General closure systems

In the previous section, we have discussed various aspects of a concept lat-
tice. However, in several applications, other lattices are used, for example for
dealing with functional dependencies in databases; another such application
is rule generation, which, as we will see in Section 6, is associated with two
different superlattices of the concept lattice.

Thus, a more general definition of lattices built on a family of subsets of proper-
ties, attributes, or, more generally, on a family of subsets of any finite universe
U is needed. This corresponds to closure systems, which we will discuss in this
section. We will see that the notion of domination between maxmods can be
usefully extended to this more general case.
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4.1 Preliminary notions on closure systems

Definition 4.1 A unary operator ϕ on a universe U is called a closure oper-
ator on U if for A, B ⊆ U :

(1) A ⊆ ϕ(A) (extensivity)

(2) ϕ(ϕ(A)) = ϕ(A) (idempotence)

(3) if A ⊆ B, then ϕ(A) ⊆ ϕ(B) (isotony)

A subset A of U is said to be closed if ϕ(A) = A.

Property 4.2 Let (P,O, R) be a context. R2 is a closure operator on P.

Definition 4.3 Given a family E of subsets of a finite set U , the closure by
intersection E∗ of E is defined inductively as follows:

(1) U and every element of E are in E ∗.
(2) If X and Y are in E∗, then X ∩ Y is in E∗.

Example 4.4 Let U = {a, b, c, d, e, f}, let E = {{a, c, d, e, f}, {b, d, e, f},
{a, c, d}, {a, c, e}}. Then E∗ = E ∪ {U, {d, e, f}, {d}, {e}, {a, c}, ∅}.

Definition 4.5 A family F of subsets of a finite set U is said to be a closure
system or a Moore family if: ∀ E ⊆ F , (

⋂

X∈E X) ∈ F .

Each closure operator ϕ on U can be associated with the family Fϕ = {ϕ(A) :
A ⊆ U}, which is a closure system such that for any A ⊆ U , ϕ(A) is the
smallest element of Fϕ which includes A. Conversely, each closure system
F ⊆ 2U (where 2U is the power set of U) can be associated with a closure
operator ϕ defined for any X ∈ U by ϕ(X) =

⋂

Y ∈F , Y ⊇X Y

Property 4.6 If F is a closure system, then (F ,⊆) is a lattice with top ele-
ment U .

Example 4.7 The lattice associated with the closure system given in Example
4.4 is given in Figure 7.

From this lattice stem the notions of cover and atom:

Definition 4.8 Given a closure operator ϕ on U , and the corresponding clo-
sure system Fϕ.
A closed set B is said to cover a closed set A in Fϕ if A ⊂ B and there is no
closed set C such that A ⊂ C ⊂ B.
B is said to be an atom of Fϕ if it covers the closed set ϕ(∅).

Thus, B covers A if for any X ⊆ U , (A ⊂ X ⊂ B) ⇒ ϕ(X) = B.
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abcdef

bdef acdef

def

φ

e acd

acd ace

Fig. 7. Lattice associated with the closure system defined in Example 4.4.

The following property links the notion of covers and atoms and will be used
to generalize Theorem 3.12 and recursive approaches to generating lattices of
closed sets.

Property 4.9 Let ϕ be a closure operator on a finite set U . For every closed
set A ∈ Fϕ, the map ϕA : X⊆U 7→ ϕ(X ∪A) is a closure operator on U such
that for every closed set B ∈ Fϕ, B covers A iff B is an atom of FϕA

.

PROOF. ϕA is clearly a closure operator on U : for every X⊆U ,

(1) X⊆ϕA(X), since X⊆X ∪ A⊆ϕ(X ∪ A) = ϕA(X),
(2) if X ⊆ Y then ϕA(X)⊆ϕA(Y ), since ϕA(X) = ϕ(X ∪ A)⊆ϕ(Y ∪ A) =

ϕA(Y ),
(3) ϕA(ϕA(X)) = ϕA, since:

ϕA(ϕA(X))= ϕ(ϕ(X ∪ A) ∪ A)

= ϕ(ϕ(X ∪ A)) since A⊆ϕ(X ∪ A)

= ϕA(X)

Let us now show that B covers A iff B is an atom of FϕA
.

If B covers A in Fϕ, then A ⊂ B. Moreover, for any X ⊆ B, X 6= ∅, we have
ϕA(X) = ϕ(X ∪ A) = B, since A ⊂ X ∪ A⊆ B. Thus, B covers ϕA(∅) and
consequently is an atom of FϕA

.

Conversely, if B is an atom of FϕA
then B covers ϕA(∅) = ϕ(A).
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4.2 Extending domination to a closure system

We will now explain how we can extend the results from Section 3 from R2 to
an arbitrary closure operator.

We have seen in Section 3.2 that by virtue of Theorem 3.12, it is possible
to compute the cover of any element of the lattice by simply restricting the
relation and by computing the corresponding minimal elements of the order
defined by the maxmods. This is based on Bordat’s subrelation, but since in
this more general context no relation is given to work with, we will need to
define domination as related to a given closed set A.

Definition 4.10 Given a closure operator ϕ and a closed set A, we will define
a binary relation on U − A, which we will denote by domϕ(A), by setting for
any x, y ∈ U − A:

(x, y) ∈ domϕ(A)⇐⇒ y ∈ ϕ(A ∪ {x})

We will say that x dominates y in A.

This extension of the notion of domination as studied in Section 3 preserves
many of the original results: for any closed set A, domϕ(A) is a pre-order (i.e.
domϕ(A) is reflexive and transitive). As a result, U − A can be partitioned
into equivalence classes which we will call maxmods; this results in a quotient
order, which is a partial order on the maxmods.

Clearly, a subset M ⊆ U − A is a maxmod of domϕ(A) if and only if it is a
maximal set such that for any x ∈ M , M ⊆ ϕ(A ∪ {x}).

The notion of domination is naturally extended to maxmods:

Definition 4.11 We denote by Domϕ(A) the binary relation defined on the
maxmods of domϕ(A): for X, Y ⊆ U − A

(X, Y ) ∈ Domϕ(A)⇐⇒ (∃x ∈ X)(∃y ∈ Y ) (x, y) ∈ domϕ(A)

We will say that maxmod X dominates maxmod Y .

Let us remark that the existential quantifiers in previous definition can be
replaced by universal quantifiers:

(X, Y ) ∈ Domϕ(A)⇐⇒ (∀x ∈ X)(∀y ∈ Y ) (x, y) ∈ domϕ(A)
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In the rest of this paper the relation domϕ(ϕ(∅)) (Domϕ(ϕ(∅)) resp.) will be
denoted in short by domϕ (Domϕ resp.).

The notion of introducer also extends to closure systems:

Definition 4.12 For x ∈ U , ϕ({x}) is called the introducer of x.

It is easy to see that this definition, when applied to R2, is the same as the one
given in Section 3. In fact, for the lattices defined by closure systems, for each
element x ∈ U , the subset of elements containing x defines a sublattice, the
bottom element of which is called the introducer of x. This can be extended
to defining the introducer of a maxmod:

Property 4.13 Each maxmod X of domϕ defines an introducer ϕ(X) which
is :
ϕ(X) =

⋃

{Y : (X, Y ) ∈ Domϕ}.

PROOF. If M ⊆U is a maxmod of domϕ, then for any x ∈ M , M ⊆ϕ({x}).
Since ϕ is an isotone operator, ϕ({x}) ⊆ ϕ(M) ⊆ ϕ({x}); thus ϕ(M) is the
introducer of x.

Moreover, for any y ∈ U such that (x, y) ∈ domϕ, ϕ({y})⊆ϕ({x}) = ϕ(M).
This shows that:

⋃

{Y : (M, Y ) ∈ Domϕ} ⊆ ϕ(M). The converse inclusion
follows by minimality of M .

Example 4.14 Let us consider the closure system from Example 4.4; let
us compute the domination relation with respect to the bottom element ∅ of
the associated lattice shown in Figure 7. ϕ(a) = {a, c}; ϕ(b) = {b, d, e, f};
ϕ(c) = {a, c}; ϕ(d) = {d}; ϕ(e) = {e}; ϕ(f) = {d, e, f}. By definition,
(x, y) ∈ domϕ(A) iff y ∈ ϕ(A ∪ {x}), here with A = ∅. The elements of domϕ

are: (a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, c), (b, d), (b, e), (b, f), (c, a),
(f, d), (f, e). So a dominates c and c dominates a; b dominates f , and f dom-
inates d and e. Maxmods: {a, c}, {b}, {d}, {e}, {f}. Non-dominating maxmods
(which are thus atoms): {a, c}, {d} and {e}. Other maxmods (which also de-
fine introducers): {f} which defines introducer {d, e, f}, and {b}, which defines
introducer {b, d, e, f}.

In a fashion quite similar to that described in Section 3, the partition into
maxmods can be computed by using partition refinement, as illustrated in the
following example.

Example 4.15 Using the closure system from Example 4.4, Figure 8 gives
the details of the computation of the partition into maxmods related to closed
set ∅.
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The result is: {a, c, d} is non-dominating, {d} and {e} are non-dominating,
{f} dominates {d} and {e},{b} dominates {f}, {d} and {e}.

To compute the partition related to a closed set A, one would replace ϕ(x) by
ϕ({x} ∪ A) and use each of the elements of U which is not in A.

abcdef

↓ ϕ(a) = {a, c}

ac | bdef

↓ ϕ(b) = {b, d, e, f}

ac | bdef

↓ ϕ(c) = {a, c}

ac | bdef

↓ ϕ(d) = {d}

ac | d | bef

↓ ϕ(e) = {d, e, f}

ac | d | e | bf

↓ ϕ(f) = {d, e, f}

ac | d | e | f | b

Fig. 8. Partition refinement into maxmods from Example 4.4 (see Example 4.15).

Using Definition 4.11, we can now reformulate Theorem 3.12 into a general
statement:

Theorem 4.16 Given a closure operator ϕ on a finite set U , and two closed
sets A, B, then B covers A iff A⊆B and B−A is a non-dominating maxmod
of domϕ(A) (or, equivalently, a minimal element of Domϕ(A)).

PROOF. From Property 4.9, follows that a closed set B covers a closed set
A if A is a proper subset of B and B is an atom of the closure system: FϕA

. By
Property 4.13, B is a non-dominating maxmod of domϕA

. For any x, y ∈ U−A,
we have the following equivalent statements:

(x, y) ∈ domϕA
⇐⇒ y ∈ ϕA({x})

⇐⇒ y ∈ ϕ(A ∪ {x})

⇐⇒ (x, y) ∈ domϕ(A)

Thus, B − A is a maxmod of domϕ(A).

The converse proof is similar.
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The inheritance mechanisms also extend readily:

Property 4.17 Let A and B be closed sets, with A ⊂ B, let x and y be
elements of U which are not in B. Then if x dominates y in A (i.e. (x, y) ∈
domϕ(A)) , then x also dominates y in B (i.e. (x, y) ∈ domϕ(B)).

PROOF. By definition of domϕ(X), the following equivalences hold for any
(x, y) 6∈ B:

(x, y) ∈ domϕ(A)⇐⇒ y ∈ ϕ(A ∪ {x})

(x, y) ∈ domϕ(B)⇐⇒ y ∈ ϕ(B ∪ {x})

Moreover, A ∪ {x}⊆B ∪ {x} implies ϕ(A ∪ {x})⊆ϕ(B ∪ {x}).
Consequently, domϕ(A) ∩ (U − B)2⊆domϕ(B).

Thus, even in this more general context, we are able, given a closure operator,
to compute the cover of an element, with the same algorithmic advantages:
possibility of a cheap local investigation of the lattice, efficient recursive gen-
eration of all closed sets, quick generation of all the introducers.

5 Logical representation of generalized domination

Horn functions are used in relational databases theory (14) and logic program-
ming (24). In order to efficiently compute generalized domination, we will now
similarly consider Horn functions associated with closure operators.

5.1 Preliminary notions

This section deals with Boolean functions that map 2U into {0, 1}. Given such
a Boolean function f , we call model (counter model resp.) any subset X ⊆U
such that f(X) = 1 (f(X) = 0 resp.). We identify every x ∈ U with the
Boolean function such that x(X) = 1 iff x ∈ X. f is said to be a literal if
f = x or f = ¬x for some x ∈ X. Literals of the form x are said to be positive,
and negative otherwise.

We now introduce the necessary notations and basic concepts on Horn func-
tions which we will need throughout the rest of this paper. We refer the reader
to (21; 12; 9) for general statements and proofs of main results in this theory.
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A propositional clause is a finite disjunction of literals that do not contain
both a function x and its negation ¬x. A (proper) sub-disjunction of a clause
is called a (proper) subclause. A clause is said to be a Horn clause if it has at
most one positive literal. The empty clause is the constant Boolean function
0. The set of negative literals of a clause is called the support of this clause.
A non-empty clause

∨

a∈A ¬a with no positive literal is said to be negative,
and is usually denoted by A→, or sometimes by A→ U . A non-empty Horn
clause

∨

a∈A ¬a ∨ b with exactly one positive literal b is said to be pure and
will be denoted by A→ b. Moreover, we will sometimes write the conjunction
∧

{A→ b : b ∈ B, b 6∈ A} of a set of pure Horn clauses having the same support
A, simply as A→ B.

A set H of Horn clauses is said to be:

• unsatisfiable if
∧

H = 0.
• a Horn representation of f if

∧

H = f ; f is then said to be a Horn function.
• irredundant if for any proper subset H′ of H,

∧

H′ 6=
∧

H.
• equivalent to another set H′ of clauses if

∧

H′ =
∧

H.

Finally, a clause g is an implicate of a Boolean function of f if f ≤ g. It
is prime if no proper subclause is an implicate. We denote by Pf the set of
prime implicates of a given Boolean function f . It is well known that f is
a Horn function if and only if Pf is a Horn representation of f . Any Horn
representation H of f such that H⊆Pf is said to be a prime representation
of f .

5.2 Horn functions associated with closure operators

We will now how we can associate a Boolean function with a closure operator
ϕ.

Definition 5.1 Let ϕ be a closure operator on U ; we denote by fϕ the Boolean
function that maps 2U onto {0, 1} defined by:

fϕ(X) = 1⇐⇒ϕ(X) = X and X 6= U

Definition 5.2 Let H be a set of clauses. We will denote by ABS(H) the
minimal equivalent set of clauses obtained from H by dropping clauses by
absorption (i.e. by dropping all clauses that have a subclause in H).

To clarify the relationship between closure systems and prime implicates of a
Horn function, we need to associate a set of propositional Horn clauses with
the subsets of U .
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Definition 5.3 Let ϕ be a closure operator on U ; let A be a subset of U .
Then A can be associated with the following set of propositional Horn clauses
Hϕ(A):

Hϕ(A) =



























{A→} if ϕ(A) = U

{A→ b : b ∈ ϕ(A) − A} if A ⊂ ϕ(A) 6= U

∅ otherwise

For every X ⊆2U , then Hϕ(X ) is defined as the set of clauses:

Hϕ(X )= ABS

(

⋃

A∈X

Hϕ(A)

)

We apply this to define a Horn representation of fϕ and show the connection
with Boolean functions usually associated with Functional Dependencies in
theory of Relational Databases (14).

Lemma 5.4 For every closure operator ϕ on U , Hϕ(2U) is a Horn represen-
tation of fϕ.

PROOF. The lemma follows from the following equivalent statements:

(1) X is a counter-model of fϕ.
(2) X is a subset of U such that X 6= ϕ(X) or X = U .
(3) X is a counter-model of

∧

Hϕ(2U)

The last two statements are equivalent because Hϕ(2U) contains either a sub-
clause of X→ if ϕ(X) = U , or a subclause of X→ x for some x ∈ ϕ(X)−X.

It is worth mentioning that this Horn representation of fϕ is not pure, as it
contains negative clauses. Any Horn function on n variables can be encoded
into a unique positive Horn function on n + 1 variables. We will not consider
such translations in this paper, since the positive component of Pfϕ plays an
important role in rule generation, as we will see in Subsection 6.3.

Theorem 5.6 below characterizes the prime implicates of fϕ. It could be de-
duced from well-known results in relational databases (14) or Boolean analysis
(16), But for the sake of self-containment, we will give a direct proof.

Definition 5.5 Let ϕ be a closure operator on U , we denote by Jϕ the family
of subsets X of U such that:
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(1) X 6= ϕ(X),
(2) for any proper subset Y of X, ϕ(Y ) 6= ϕ(X).

In the terminology of Relational Databases, an element J of Jϕ such that
ϕ(J) = F ∈ Fϕ (i.e. ϕ(J) is an element of closure system Fϕ) is called a
generator of F . If F = U then J is said to be a key.

Note that, by Item 1 of Definition 5.5, Jϕ ∩Fϕ = ∅ and that, by Item 2, each
X in Jϕ is a minimal element of {Y ⊆ U : ϕ(Y ) = ϕ(X)}. Thus a subset
A⊂U is closed if and only if for any negative clause X→ we have X 6⊆A, and
for any clause X→ α ∈ Hϕ(Jϕ) such that X⊆A, we have α ∈ A.

Theorem 5.6 Let ϕ be a closure operator on U , then Hϕ(Jϕ ∪{U →}) is the
set of prime implicates of fϕ.

PROOF. First, we show that any clause of Hϕ(Jϕ) is a prime implicate of
fϕ. By Lemma 5.4, since Hϕ(Jϕ)⊆Hϕ(2U), Hϕ(Jϕ) is a set of implicates of
fϕ. Let g ∈ Hϕ(Jϕ). We consider two cases:

(1) Suppose g = J→ is a negative clause of Hϕ(Jϕ). If J was not prime, we
would have J ′ ⊂ J such that fϕ ≤ J ′→< J →.
Since J ∈ Jϕ and J ′ ⊂ J we have ϕ(J ′) 6= U . Then ϕ(J ′) is a model of
fϕ and a counter-model of J ′→. This contradicts the hypothesis that J ′

is an implicate of fϕ. Thus no subclause of J → is an implicate of fϕ,
which shows that J→ is prime.

(2) Suppose g = J → j is a pure Horn clause of Hϕ(Jϕ). By absorption, we
have:

j ∈ϕ(J) −
⋃

S⊂J,S∈Jϕ

ϕ(S)

Let us suppose that there exists a proper subclause h of J → j that
is an implicate. Therefore there exists J ′ ⊂ J such that h = J ′ → j.
Consequently, there exists K ∈ Jϕ with: K⊆J ′ ⊂ J such that j ∈ ϕ(K),
which contradicts (1).

Conversely, let h be a prime implicate of fϕ. Since fϕ is a Horn function, h is
a Horn clause. We again examine two cases:

(1) If h is negative, h = A → for some proper subset A of U . Then for
any subset X ⊆ U such that A ⊆ X, f(X) = 0. Then ϕ(A) = U and
consequently A is a key in Jϕ.

(2) If h is pure, then h = A → a for some proper subset A of U and some
a ∈ U − A. Since A→ a is a prime implicate of f , f(A) = 0 and for any
subset X of U such that A ⊂ X, f(X) = 1 implies a ∈ X. thus a ∈ ϕ(A)
and A is a generator of ϕ(A), as if A was not a generator, there would
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exist a proper subset A′ of A such that f ≤ A′ → a, which contradicts
the assumption that A→ a is prime.

Example 5.7 We will use the following relation, from (20)

P = {a, b, c, d, e}

O = {1, 2, 3, 4}

R a b c d e

1 × ×

2 × ×

3 × × ×

4 × ×

The associated Concept Lattice is shown in Figure 9.

Let us use the concepts to define a closure system on U = {a, b, c, d, e}:

Fϕ = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c, d}, {d, e}, U}

Jϕ = {{e}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {a, b, c}}

Hϕ(Jϕ)= {{a, d}→, {a, e}→, {c, e}→, {b, e}→, {a, b, c}→,

{e}→ d, {b, c}→ d, {b, d}→ c, {c, d}→ b}

fϕ = (¬a ∨ ¬d) ∧ (¬a ∨ ¬e) ∧ (¬c ∨ ¬e) ∧ (¬b ∨ ¬e)

∧(¬a ∨ ¬b ∨ ¬c) ∧ (¬e ∨ d) ∧ (¬b ∨ ¬c ∨ d) ∧ (¬b ∨ c ∨ ¬d)

∧(b ∨ ¬c ∨ ¬d)

bcd
ab ac

a b c d

T

de

T

Fig. 9. Concept lattice of the relation from Example 5.7.

5.3 Horn representation of domination for closed sets

We will now translate the domination relations into logical form.
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Definition 5.8 Let ϕ be a closure operator on U , X ⊆2U , A⊆U , and (x, y)⊆
(U − A)2. We will define Kϕ(X , A, x, y) as the set of clauses:

Hϕ(X )∪{→ a : a ∈ A}∪{→ x, y→}

Theorem 5.9 Let ϕ be a closure operator on U , H a Horn representation
of fϕ, A a closed set, and (x, y) ∈ (U − A)2. Then (x, y) ∈ domϕ(A) iff
Kϕ(H, A, x, y) is unsatisfiable.

PROOF. From Lemma 5.4, we can deduce that H = Hϕ(2U), and by defini-
tion, (x, y) ∈ domϕ(A) iff y ∈ ϕ(A ∪ {x}).

Clearly, we again have to consider two cases:

(1) ϕ(A ∪ {x}) = U . In this case, (x, y) ∈ domϕ(A) for every y ∈ U − A
by definition of domϕ(A). Moreover, there exists a least one subclause of
(A ∪ {x})→ in H, thus H ∪ {→ a : a ∈ A}⊆Kϕ(H, A, x, y) is obviously
unsatisfiable for every y ∈ U − A.

(2) ϕ(A ∪ {x}) 6= U . In this case, if (x, y) ∈ domϕ(A), then a subclause
A ∪ {x} → y is in H and Kϕ(H, A, x, y) is unsatisfiable. Conversely,
if Kϕ(H, A, x, y) is unsatisfiable, then for any model M of f such that
A ∪ {x}⊆M , we have y ∈ M and therefore, y ∈ ϕ(A ∪ {x}).

As the Horn SAT problem can be solved in linear time (see, for example, (15)
or (27)), we can deduce from Theorem 5.9 that domϕ(A) can be computed
in O(|H|.|U − A|2) time, for any closed set A. Moreover, we can suppose
that H is an irredundant subset of Hϕ(Jϕ), since an irredundant and prime
representation of

∧

H can be computed in O(|H|2) time (21).

Example 5.10 Let Fϕ be the closure system defined in Example 5.7.

Hϕ(Jϕ) ∪ {→ d} = { {a, d} →, {a, e} →, {c, e} →, {b, e} →, {a, b, c} →,
{b, d}→ c, {c, d}→ b,→ d }.

and thus:

• domϕ({d}) = {(b, c), (c, b), (a, b), (a, c), (a, e)}
• Domϕ({d}) = {({a}, {b, c}), ({a}, {e})}
• Cover of {d}: {{b, c, d}, {d, e}}
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6 Closure systems associated with rule generation

One of the most crucial problems in Data Mining using Formal Concept Analy-
sis is rule extraction. In Example 5.7, e will imply d, because there is no concept
where e appears without d. Finding these rules, called exact association rules,
is of major importance in practise, and clearly there are a great number of
them.

Work by Guigues and Duquenne (20) and by Ganter (17) show that the set
of such rules can be represented by a basis of rules, from which all other rules
can be easily inferred, a process which can drastically reduce the number of
rules which need to be computed and memorized. Computing this basis is
equivalent to computing the canonical cover of functional dependencies in a
relational database (25).

In relation to the work in this paper, existing rule generation algorithms in
Formal Concept Analysis are based on the definition of two closure systems,
corresponding to pseudo-closed sets and quasi-closed sets associated with the
initial closure system corresponding to concepts.

In this section, we will apply our results to these two other closure systems,
and in particular we will accordingly transpose Theorem 5.9.

6.1 Dependency relations and basis

Any closure system is associated with a dependency relation corresponding to
the set of association rules (28). Generators and basis can thus be used in the
context of closure systems.

Definition 6.1 A binary relation D on 2U is said to be a dependency relation
if the following properties hold for all Y1, Y2, Y3⊆U :

D1) D is transitive,
D2) if Y2 ⊆ Y1 then (Y1, Y2) ∈ D,
D3) if (Y1, Y2) ∈ D then (Y1 ∪ Y3, Y2 ∪ Y3) ∈ D.

Note that conditions D1) and D3) imply that if (Y1, Y2) ∈ D and (Y3, Y4) ∈ D,
then (Y1 ∪ Y3, Y2 ∪ Y4) ∈ D. Consequently, the binary relation ΘD defined on
2U by (X, Y ) ∈ ΘD iff (X, Y ) ∈ D and (Y, X) ∈ D is a congruence on the
semi-lattice (2U ,∪). The structure (U, ΘD) is called a dependence space in
(28).

Definition 6.2 If R is a relation on 2U , we will denote by R+ the minimal
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relation on 2U including R which is a dependency relation.
Let D be a dependency relation on 2U . A subrelation R ⊆ D is said to be a
generator of D iff R+ = D.
If there is some proper subrelation S of R such that S+ = D, then R is said
to be redundant.

Definition 6.3 Let ϕ be a closure operator U . We define a binary relation
→ϕ on (2U)2 by the following equivalent conditions for X, Y ⊆U :

X→ϕ Y ⇐⇒ (∀Z⊆U) (X⊆ϕ(Z) ⇒ Y ⊆ϕ(Z))

⇐⇒ϕ(Y )⊆ϕ(X)

⇐⇒Y ⊆ϕ(X)

where (X, Y ) ∈→ϕ is denoted by the infix notation X→ϕ Y .

A pair of subsets X, Y such that X →ϕ Y is called an exact association rule
in Data Mining or a (functional) dependency in the theory of relational data-
bases.

From (28) hold the following results.

Property 6.4 An operator ϕ on U is a closure iff→ϕ is a dependency relation
on 2U .

From a formal point of view, X →ϕ Y denotes a pair of sets, while X → Y
denotes a set of propositional clauses. However, we will see that one holds if
and only if the other holds.

We can now define generators and basis for an association relation:

Definition 6.5 Let ϕ be a closure operator on U , let X ⊆ 2U be a family of
non-closed sets. We will denote by Rϕ(X ) the relation {(X, ϕ(X)) : X ∈ X}⊆
(2U)2.
We will say that X is a generator of →ϕ if Rϕ(X )+ =→ϕ. If in addition
Rϕ(X ) is minimal, then X is called a basis of→ϕ.

As it has been pointed out in (20), Jϕ is a generator of→ϕ.

Definition 6.6 Let ϕ be a closure operator on U . Then a subset X ∈ 2U −Fϕ

is said to be quasi-closed iff for any Y ∈ Fϕ, X ∩ Y ∈ Fϕ ∪ {X}. We will
denote by Qϕ the family of quasi-closed sets.

Because of Definition 4.5, for any quasi-closed set X, Fϕ ∪ {X} is a closure
system. This leads to the following theorem, proved in (20; 10).

Theorem 6.7 Let ϕ be a closure operator on U , then:
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(1) Qϕ is a generator of →ϕ.
(2) Fϕ ∪Qϕ is a closure system.

(20) showed that all the basis of →ϕ have the same cardinality, and they
define a unique (canonical) basis by using the closure system which we will
now describe.

Definition 6.8 Let ϕ be a closure operator on U . The family Bϕ of pseudo-
closed sets of ϕ is defined by:

B ∈ Bϕ iff ϕ(B) 6= B and (∀A ∈ Bϕ) A ⊂ B ⇒ ϕ(A)⊆B

Theorem 6.9 (20) Let ϕ be a closure operator on a finite set U , then:

(1) Bϕ is a basis of→ϕ.
(2) Bϕ⊆Qϕ.
(3) Fϕ ∪ Bϕ is a closure system.

We refer the reader to the original paper (20) or to (11) for the proof of
Theorems 6.7 and 6.9.

Example 6.10 Figure 10 gives the lattice of Fϕ∪Bϕ corresponding to Exam-
ple 5.7.

cdbdbcad

bcd

a b

ab ac de

T

T

bcde

c d

e

Fig. 10. Lattice of concepts and pseudo-closed sets of the relation from Example
5.7.

In the rest of this work, we will call family Bϕ the canonical basis of →ϕ;
we will denote by θϕ the closure operator associated with the closure system
Fϕ ∪Qϕ, and by βϕ the closure operator associated with Fϕ ∪ Bϕ.

As we have generalized domination to any closure system, there will be a
domination for closure system Fβϕ = Bϕ ∪ Fϕ and a domination for closure
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system Fθϕ = Qϕ∪Fϕ. Characterization 4.16 can thus be applied to generating
the closed sets of βϕ and θϕ.

6.2 Canonical basis and minimal support Horn representation

We will now give a logical representation of the canonical basis, and corre-
spondingly express the domination relations associated with Fβϕ and Fθϕ.

This logical representation is based on the following theorem well-known in
Relational Databases (14, Ch.11, §2.2). We restate it here using the notations
introduced in the previous subsection.

Theorem 6.11 Let R be a binary relation on 2U , X a subset of U and x an
element of U . Then, (X, {x}) ∈ R+ iff we have:

∧

{V → W : (V, W ) ∈ R} ∧ ¬(X→ x) = 0

From this theorem, the two following corollaries follows directly. The first one
translates in terms of Horn functions the notion of generator of a dependency
relation, the second one translates the notion of non redundancy of a set of
functional dependencies.

Corollary 6.12 Let ϕ be a closure operator; X is a generator of→ϕ iff Hϕ(X )
is equivalent to Hϕ(2U).

PROOF. X is a generator of→ϕ iff Rϕ(X )+ =→ϕ. From Theorem 6.11 follows
that, for any A⊆U and a ∈ U − A,

(A, {a}) ∈ Rϕ(X )+ ⇐⇒
∧

Hϕ(X ) ∧ ¬(A→ a) = 0

Consequently, Rϕ(X )+ =→ϕ iff
∧

Hϕ(2U) and
∧

Hϕ(X ) have the same impli-
cates iff Hϕ(X ) is equivalent to Hϕ.

This corollary shows the well-known connection between the closure of a set
of functional dependencies using rules D1), D2) and D3) and the forward
chaining closure defined by a set of clauses. However, there is a slight difference
between the notion of a non-redundant set of functional dependencies and a
non redundant set of clauses. The following definition and corollary give the
exact connections between these concepts, as it is done in (9).
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Definition 6.13 Given a set H = {Ap → ap : p ∈ P} ∪ {Bn →: n ∈ N} of
Horn Clauses, we denote by Su(H) the set of its supports: {Ap : p ∈ P}∪{Bn :
n ∈ N}.

We shall say that H is support -non-redundant if {Bn : n ∈ N} is irredundant
and for any p ∈ P ,

∧

(H− {Ai→ ai : Ai = Ap, i ∈ P}) 6=
∧

H

Otherwise H is said to be support-redundant.

Finally, H is said to be a minimal-support Horn representation of a function
f if H is a Horn representation of f such that the number |Su(H)| of supports
in H is minimal.

Corollary 6.14 Let ϕ be a closure operator on U , and X ⊆Jϕ, then:

(1) Rϕ(X ) is non-redundant iff Hϕ(X ) is support-non-redundant.
(2) X is the canonical basis of ϕ iff Hϕ(X ) is a minimal-support Horn rep-

resentation of fϕ with supports of maximal cardinality.

PROOF. We first prove Item 1. Let us suppose that there exists J ∈ Jϕ

such that Rϕ(X − {J})+ =→ϕ. By Corollary 6.12, Hϕ(X − {J}) is equiva-
lent to Hϕ(2U). Since J is a generator, the set XJ of clauses in Hϕ(X ) such
that Su(XJ) = {J} is non-empty. Consequently, Hϕ(X ) − XJ ⊂ Hϕ(X ) and
∧

(Hϕ(X )−XJ) =
∧

Hϕ(X ). The converse can be proved in a similar fashion.

Item 1 together with Corollary 6.12 imply that X is a basis if and only if H(X )
is a minimal support Horn representation of fϕ. Given such a representation,
it follows from Theorem 6.9 that

∧

H(X ) =
∧

H(Bϕ) and |Su(H(X ))| =
|Bϕ| = |Su(H(Bϕ))|. Moreover, the closure operator βϕ maps each support
S ∈ Su(H(X )) into the smallest B ∈ Bϕ such that S ⊆ B. This defines a
one-to-one correspondence that maps any element of |Su(H(X ))| into a larger
element in Su(H(Bϕ)).

The following corollary derives (25), where algorithms to compute canonical
covers of functional dependencies in a relational database are presented. A
complete and direct proof can now be found in (9).

Corollary 6.15 Let ϕ be a closure operator on a finite set U . Given the
generator Jϕ, the problem of finding a basis of ϕ is polynomially solvable.

We will now translate dominations for closure βϕ into logical form, as we did
in Theorem 5.9 for closure ϕ.
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Let ϕ be a closure operator on U , A a closed set, (x, y) ∈ (U −A)2 and [Bϕ]A,x

the following subset of Bϕ:

[Bϕ]A,x = {X ∈ Bϕ : |X| < |βϕ(A ∪ {x})|}

By Definition 6.8 and by Theorem 6.11,

(x, y) ∈ domβϕ(A) ⇐⇒ Kϕ([Bϕ]A,x , A, x, y)

is unsatisfiable.

6.3 Horn representations of domination and quasi-closed sets

Another approach to finding the canonical basis is to generate the quasi-closed
sets by the method presented in (20). In the context of propositional Horn
clauses, the relationship between the representation of fϕ based on quasi-closed
sets and the one based on pseudo-closed sets is quite simple since Hϕ(Bϕ) =
Hϕ(Qϕ).

Domination for θϕ can be computed for any A ∈ Fϕ using any generator
G ⊆ Jϕ of →ϕ, as we will see in Theorem 6.20. To state this theorem we
need to consider finite ideals of closure systems and pure components of Horn
representations.

Definition 6.16 For any closed set A, we will denote by ϕ|A the closure
defined on A by (ϕ|A)(X) = ϕ(X) for any X ⊆A. Let H be a prime repre-
sentation of fϕ, we will denote by H|A the set of clauses:

H|A = {g ∈ H : Su{g}⊆A} ∪ {A→}

where Su{g} is the support of g.

Property 6.17 Let ϕ be a closure operator and H a prime representation of
fϕ, then for every closed set A, H|A is a Horn representation of fϕ|A.

PROOF. Clearly,
∧

H|A = fϕ ∧
∧

{x→: x 6∈ A} ∧ A→= fϕ|A

Given a set of clauses H, we denote by HP the subset of pure Horn clauses.
We shall call this subset the pure component of H. The following property has
been shown in (21).
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Property 6.18 The pure components of prime Horn representations of a
given Boolean function are equivalent.

We can now state the Horn representation of domination for quasi-closed sets
based on the following lemma from (20).

Lemma 6.19 ((20)) X ∈ Qϕ iff for any Y ⊂ X, ϕ(Y ) 6= ϕ(X) ⇒ ϕ(Y ) ⊂
X.

Theorem 6.20 Let ϕ be a closure operator on U , A a closed set, (x, y) ∈
(U − A)2, H a prime representation of fϕ and P a prime representation of
∧

(H|ϕ(A ∪ {x})) = fϕ|ϕ(A∪{x}).

Then (x, y) ∈ domθϕ(A) iff Kϕ

(

PP , A, x, y
)

is unsatisfiable.

PROOF. Let X be a subset of U and Jϕ(A, x) = {J ∈ Jϕ : ϕ(J) ⊂ ϕ(A ∪
{x})}). From Lemma 6.19 and Theorem 6.11, for any subset Z ⊆ U , the
smallest quasi-closed set Qϕ(Z) containing Z is the smallest solution of the
equation:

∧

Hϕ(Jϕ(A, x)) ∧
∧

{→ z : z ∈ Z}= 1

However, H(Jϕ(A, x)) is a prime Horn representation of the pure component
of fϕ|ϕ(A∪{x}). By Property 6.18 we have:

∧

Hϕ(Jϕ(A, x))=
∧

PP

Consequently, y ∈ θϕ(A ∪ {x}) iff
∧

{→ z : z ∈ A ∪ {x}} ∧ y →= 0, which
proves the theorem.

As recalled in Section 5.3, a prime cover of H can be computed in O(|H|2), so
domθϕ(A) can be computed in O(|H|2.|U − A|) if |U − A| ≤ |H|.

However, using the fact that, given a closure operator ϕ, any generator G⊆Jϕ

of →ϕ induces a prime representation of fϕ, it is also possible to compute
domθϕ(A) in O(|G|.|U−A|2) time if the relation Rϕ(G) is known. We illustrate
this in the following example.

Example 6.21 Consider again the closure system defined in Example 5.7.

Jϕ({d, e}, a)= {{e}, {b, c}, {b, d}, {c, d}}

=Jϕ({d, e}, b) = Jϕ({d, e}, c)
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where Jϕ(A, a) has been defined for any closed set and any a ∈ U in the proof
of Theorem 6.20. For x ∈ {a, b, c}:

Hϕ(Jϕ({d, e}, x) ∪ {→ d,→ e}) = {bd→ c, cd→ b,→ d,→ e})

and domθϕ({d, e}) = {(b, c), (c, b)}. Therefore, the elements of Qϕ that cover
{d, e} are {a, d, e} and {b, c, d, e}. Among them, only the last one is in Bϕ.

7 Conclusion and open questions

In this paper, we use the relationship between concept lattices and domination
in graphs to extend existing graph-oriented results on concept lattices to a
general closure system and to Horn clauses.

Though there obviously remains much work to be done in this direction, our
results are interesting not only from a possible algorithmic point of view, but
also because they can lead to a better understanding of the canonical basis of
rules; moreover, it is important to find new ways of modeling these results so
that a variety of non-specialists can achieve a better grasp on these problems.

Our results are algorithmically promising because the notion of domination al-
lows a local approach to generating closed sets: first, one can easily examine a
subproblem related to a particular area of the underlying lattice, without gen-
erating the entire lattice structure starting from the bottom element. Second,
this can allow a very efficient recursive generation technique of the lattice, as
we have shown is the case for concept lattices (5). The same technique applies
to generating other lattices of closed sets; rule generation for example should
be an interesting application of this.

Another question of great current interest is that of generating approximate as-
sociation rules. As an example, an interesting recent approach by J-M. Bernard
and S. Poitrenaud (2) works by first approximating the binary relation accord-
ing to coherent probabilistic models which must be compatible with logical
rules; the logical interpretation we introduce in this paper could be combined
with this approach in future work.
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