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Abstract. We investigate properties which hold for both the lattice of
a binary relation and for its ’mirror lattice’, which is the lattice of the
complement relation.

We first prove that the relations whose lattice is dismantlable corres-
pond to the class of chordal bipartite graphs; we provide algorithmic
tools to find a doubly irreducible element in such a lattice.

We go on to show that a lattice is dismantlable and its mirror lattice
is also dismantlable if and only if both these lattices are planar.
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1 Introduction

A binary relation is associated with a bipartite graph and a concept (or Galois)
lattice. Its complement relation, which we call the mirror relation, is associated
with the corresponding mirror bipartite graph and mirror lattice.

This mirror lattice was investigated by e.g. Deiters and Erné [10], who ex-
amined the succession of lattices one can obtain by repeatedly computing the
mirror relation, reducing it, and computing the mirror of the obtained relation.

Our area of interest is to find properties which are preserved in the mirror
lattice. In [5], we extended the well-known property that a lattice which is a
chain has a mirror lattice which is a chain: we showed that a lattice has an
articulation point if and only if its mirror lattice has an articulation point (i.e.
an element which is comparable to all the other elements, but is not extremum).

In this paper, we investigate dismantlable lattices. A lattice is said to be
dismantlable if one can repeatedly remove a doubly irreducible element until the
lattice becomes a chain. This class was investigated by several authors: Baker,
Fishburn and Roberts [3] showed that all planar lattices are dismantlable; Rival
[20] showed that removing a doubly irreducible element always defines a sub-
lattice; Rival and Kelly [21] characterized dismantlable lattices as being ’crown-
free’; recently, Brucker and Gély [8] studied co-atomistic dismantlable lattices.
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We will show that there is a strong mirror relationship between planar lattices
and dismantlable lattices: a lattice and its mirror lattice are both dismantlable
if and only if the lattice and its mirror lattice are both planar.

To accomplish this, we use the wealth of existing results on bipartite graphs.
We first give a short proof that the bipartite graph family corresponding to dis-
mantlable lattices is the well-studied class of chordal-bipartite graphs (bipartite
graphs with no chordless cycle on more than 4 vertices). We then examine the
chain dimension of these graphs, to show that when both the graph and its mir-
ror are chordal-bipartite, then both graphs are of chain dimension at most 2,
which corresponds to planar lattices.

The paper is organized as follows: Section 2 gives necessary preliminary no-
tations and results on graphs and lattices. Section 3 gives a short proof of the
property that a lattice is dismantlable if and only if the corresponding bipartite
graph is chordal-bipartite. We give algorithmic considerations on dismantlable
lattices in Section 4. Section 5 shows that both the lattice and its mirror lattice
are dismantlable if and only if both the lattice and its mirror lattice are planar.
We conclude in Section 6.

2 Preliminaries

As our results pertain to both lattices and graphs, we give the necessary notions
for both fields.

2.1 Relations, concepts and lattices

Given a finite set O of objects (which we will denote by numbers in our examples)
and a finite set A of attributes, (which we will denote by lowercase letters), we
will consider a binary relation R as a subset of the Cartesian product O×A. The
mirror relation of R is the complement relation R ⊆ O×A such that (x, y) ∈ R
iff (x, y) 6∈ R.
R(x) = {y ∈ A | (x, y) ∈ R} is the row of x ∈ O and R−1(y) = {x ∈

A | (x, y) ∈ R} is the column of y. Rows and columns are both called lines of
R. A relation is said to be clarified when it has no identical lines. A relation is
said to be reduced when it is clarified and has no line which is the intersection
of several other lines.

The triple (O,A,R) is called a context [13]; a concept of this context is a
maximal Cartesian sub-product X × Y ⊆ R, denoted (X,Y ): ∀x ∈ X, ∀y ∈
Y, (x, y) ∈ R, and ∀x ∈ O − X ∃y′ ∈ Y | (x, y′) 6∈ R, and ∀y ∈ A − Y ∃x′ ∈
X | (x′, y) 6∈ R. X is called the extent of the concept (X,Y ), and Y its intent. In
our examples, we will shorten the notations using for instance (12, abcde) instead
of ({1, 2}, {a, b, c, d, e}).

A lattice is a partially ordered set in which every pair {e, e′} of elements has
both a least upper bound join(e, e′) and a greatest lower bound meet(e, e′). An
element x of a lattice is said to be irreducible if it is either meet irreducible:
x=meet(e, e′) =⇒ e=e′=x, or join irreducible: x=join(e, e′) =⇒ e=e′=x. A
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doubly-irreducible element is both meet irreducible and join irreducible. A finite
lattice has two extremal elements: a lowest element, called the bottom element,
and a greatest element, called the top element.

A lattice is graphically represented by its Hasse diagram: transitivity and
reflexivity arcs are omitted, and the orientation from bottom to top is implicit.
A maximal chain of a lattice is a path (all the elements are pairwise comparable)
from bottom to top in the Hasse diagram. A chain lattice is a lattice which is a
chain. A lattice is called planar if its Hasse diagram can be represented without
crossing edges.

The concepts of a context (O,A,R) are ordered by inclusion of their intents:
(X,Y ) < (X ′, Y ′) iff X ⊂ X ′ iff Y ′ ⊂ Y . This defines a finite lattice called a
concept lattice (or Galois lattice [9]) denoted L(R). A predecessor of C in L(R)
is any C ′ < C such that there is no C ′′ with C ′ < C ′′ < C; successors are defined
dually.

An object-concept is a concept Cx which introduces some object x: x is in the
extent of Cx but is not in the extent of any smaller concept C ′ < Cx. Dually,
an attribute-concept is a concept Cy which introduces some attribute y: y is in
the intent of Cy but is not in the intent of any greater concept C ′ > Cy. Thus,
the intent of object-concept Cx is R(x), and the extent of attribute-concept Cy

is R−1(y). Object-concepts and attribute-concepts are also called introducers.
Objects are introduced from bottom to top and attributes from top to bottom
in L(R). A given concept may introduce several objects and/or attributes. We
will call mixed introducer a concept which introduces at least one object and at
least one attribute.

When a relation is reduced, the irreducible elements of the lattice are ex-
actly the introducers; in a non-reduced but clarified relation, a meet irreducible
element introduces exactly one object, and a join irreducible element introduces
exactly one attribute.

Our lattices are drawn with the program ’Concept Explorer’ [1] using the
reduced labeling, where in the Hasse diagrams, each object or attribute labels
only one concept: its introducer.

The reader is referred to [13] and [9] for details on lattices and ordered sets.

2.2 Graphs

An undirected finite graph is denoted G = (V,E), where V is the vertex set,
|V | = n, and E is the edge set, |E| = m. An edge {x, y} ∈ E, linking vertices
x and y, is denoted xy; we say that x and y see each other or are adjacent. A
stable set is a set of pairwise non-adjacent vertices. The neighborhood NG(x) of
a vertex x in graph G is the set of vertices y 6= x such that xy is an edge of
E; the subscript G may be omitted. The neighborhood of a set X of vertices is
N(X) = (

⋃
x∈X N(x))−X. G(X) denotes the subgraph induced by X in G, i.e.

the subgraph of G with vertex set X and edge set {xy ∈ E |x, y ∈ X}.
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2.3 Bipartite graphs

A bipartite graph G = (V1 + V2, E) is a graph whose vertex set can be biparti-
tioned into two disjoint sets V1 and V2, each inducing a stable set. We will call
the mirror (or bipartite complement) of a bipartite graph G = (V1 + V2, E) the
bipartite graph mir(G) = (V1 + V2, E

′) such that ∀x ∈ V1, ∀y ∈ V2, xy ∈ E′ iff
xy 6∈ E.

We will say that vertex x ∈ V1 (resp. ∈ V2) is universal if x sees all the
vertices of V2 (resp. V1). A biclique (X + Y ) in a bipartite graph, with X ⊆ V1
and Y ⊆ V2, is defined as having all possible edges: ∀x ∈ X,∀y ∈ Y, xy ∈ E.
We will refer to two vertices of a bipartite graph as twin vertices if they have
the same non-empty neighborhood: t and t′ are twin vertices if N(t) = N(t′)
and N(t) 6= ∅; note that t and t′ then both belong to V1 or both belong to V2.
A C4 is an induced chordless cycle on 4 vertices, and, more generally, a Ci is an
induced chordless cycle on i vertices; an iK2 is i pairs of adjacent vertices which
are pairwise edge-disjoint. These structures are illustrated below.

a C4 a C6 a C8 a 2K2 a 3K2

An edge xy of a bipartite graph is called bisimplicial if N(x) ∪ N(y) is a
maximal biclique [14], [16].

A bipartite graph is said to be chordal-bipartite if it has no chordless induced
cycle on strictly more than 4 vertices [14]. A chain graph is a bipartite graph
with no induced 2K2; a chain graph is chordal-bipartite.

Property 1. [14] A chordal-bipartite graph G has at least one bisimplicial edge
e, and removing e from G yields a chordal-bipartite graph.

Characterization 2. [14] A bipartite graph is chordal-bipartite iff one can re-
peatedly remove a bisimplicial edge until no edge is left.

The reader is referred to [22] and [7] for details on graphs.

2.4 Concepts lattices and bipartite graphs

Any context (O,A,R) is associated with a bipartite graph bip(R) = (O+A, E),
where xy ∈ E iff (x, y) ∈ R, and with a concept lattice L(R). Thus, for x ∈ O,
Nbip(R)(x) = R(x), and for y ∈ A, Nbip(R)(y) = R−1(y); O and A are stable sets
of bip(R). bip(R) is a chain graph iff L(R) is a chain lattice [4]. The bipartite
graph associated with the mirror relation R of R, denoted bip(R), is the mirror
of bip(R).

Property 3. For any context (O,A,R), (X,Y ) is a concept of L(R) iff X ∪ Y
defines a maximal biclique of bip(R).
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The introducers of a lattice are trivially characterized in their graph coun-
terpart as follows:

Lemma 4. Let (O,A,R) be a context, let (X,Y ) be an element of L(R) ; then
(X,Y ) introduces x ∈ X (resp. y ∈ Y ) if and only if Nbip(R)(x) = Y (resp.
Nbip(R)(y) = X).

In the rest of this paper, bipartite graphs denoted bip(R) will implicitly refer
to the associated relation R ⊆ O ×A and lattice L(R).

Example 1. We will use our running example from [5]. Figure 1 shows a relation
R with its associated bipartite graph bip(R), and the associated concept lattice
L(R), as well as the mirror objects associated with R: the complement relation
R with its associated graph bip(R), and the associated concept lattice L(R).

R a b c d

1 × × ×
2 × ×
3 ×
4 × R and its mirror R

R a b c d

1 ×
2 × ×
3 × × ×
4 × × ×

bip(R) and its mirror bip(R)

L(R) and its mirror L(R)

Fig. 1. A relation R, its mirror R, the associated graphs and lattices.

3 Dismantlable lattices and chordal-bipartite graphs

Rival [20] studied dismantlable lattices, and proved that when a doubly irre-
ducible is removed from a lattice, a sublattice is obtained.

In order to discuss dismantlability of concept lattices, we will first specify how
the relation is to be modified in order to remove a doubly irreducible element
from the corresponding lattice.
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Theorem 5. Let (X,Y ) be a doubly irreducible element of L(R), introducing
the set of objects W ⊂ X and the set of attributes Z ⊂ Y ; let R′ be the relation
obtained by removing from R all the elements of the Cartesian product W × Z:
R′ = R− {(w, z) ∈ R |w ∈W, z ∈ Z}.

Then L(R′) is a sublattice of L(R), with the same elements as L(R), except
for the doubly irreducible element (X,Y ), which has been removed.

Proof: Let concept (X ′, Y ′) be the unique predecessor of doubly irreducible
concept (X,Y ) and let concept (X ′′, Y ′′) be its unique successor.

[20] stated that removing a doubly irreducible element in a lattice results
into a sublattice of the initial lattice; in our case, after the removal of (X,Y ),
(X ′′, Y ′′) will become the new successor of (X ′, Y ′) and all the other least upper
bounds and greatest lower bounds will be preserved.

Thus, for every object w ∈W ⊆ X and every attribute z ∈ Z ⊆ Y introduced
by (X,Y ), w is in the extents of (X ′′, Y ′′) and of all its greater concepts but
z is not in their intents; then the removal of (w, z) in R will not change these
greater concepts. The same applies for (X ′, Y ′) and its smaller concepts. The
other concepts, which are not comparable with (X,Y ), also remain unchanged.

After the removal of W ×Z, the objects of W will be introduced by (X ′′, Y ′′)
and the attributes of Z will be introduced by (X ′, Y ′) in the new (sub-)lattice
L(R′). 2

In order to prove our main theorem in Section 5, we need the result that
the class of dismantlable lattices corresponds to the class of chordal-bipartite
graphs.

This result was stated by Lifeng Li [17], but to our knowledge there is no
available proof, published or otherwise. This result could easily be derived from
the characterization of [21] for dismantlable lattices as being crown-free, as a
crown in the lattice can be associated with a chordless cycle of length 6 or
more in the bipartite graph; it could also be derived from [8], as they show the
relationship between strongly chordal graphs and dismantlable lattices, and there
is a one-to-one correspondence between strongly chordal graphs and chordal-
bipartite graphs [7]. We will prefer a short direct proof using results on bipartite
graphs, which will give us some insight on what happens in the graph when a
doubly irreducible of the lattice is removed.

We can establish the relationship between bisimplicial edges and mixed in-
troducers:

Property 6. Let (X,Y ) be a doubly irreducible element of L(R), introducing
x ∈ X and y ∈ Y ; then xy is a bisimplicial edge of bip(R).

Proof: By Lemma 4, in bip(R), N(x) = Y and N(y) = X. Since (X,Y ) is a
concept, N(x)∪N(y) is a maximal biclique, so by definition, xy is a bisimplicial
edge. 2

Property 7. Let xy be a bisimplicial edge of bip(R), with X = N(x) and Y =
N(y); then (X,Y ) is an element of L(R) introducing both x and y.

49



Proof: By definition of a bisimplicial edge xy, N(x) ∪ N(y) is a maximal bi-
clique. No vertex outside of N(x) ∪ N(y) ∪ {x, y} can see either x or y, so by
Lemma 4, (X,Y ) introduces both x and y. 2

We can now derive the characterization for dismantlable lattices:

Characterization 8. A concept lattice is dismantlable iff the associated bipar-
tite graph is chordal-bipartite.

Proof:
Let us consider a dismantlable lattice L(R). Removing a doubly irreducible
element (X,Y ) from L(R) corresponds, by Property 6, to removing a bisimplicial
edge from the associated bipartite graph bip(R) if R is clarified; if it is not, let
K be the set of objects which are introduced by (X,Y ), and let Z be the set
of attributes which are introduced. We can remove all elements of K × Z by
removing bisimplicial edges as follows: choose x ∈ K and remove all edges in Z
which are incident to x, then choose another element of K and remove all edges
incident to it in K × Z, an so on.

If we go on removing doubly irreducible elements from the lattice, until we
obtain a chain lattice, this will thus correspond to a succession of removals
of bisimplicial edges from the chordal-bipartite graph until it is a chain graph,
which is chordal-bipartite. Since we have eliminated edges from bip(R) and found
a chordal-bipartite graph, by Characterization 2, the original bipartite graph was
also chordal-bipartite.

Conversely, let bip(R) be a chordal-bipartite graph. If R is not a reduced rela-
tion, let us reduce it, obtaining relation R′; the corresponding bipartite graph
bip(R′) is chordal-bipartite, as it was obtained from a chordal-bipartite graph by
removing vertices and their incident edges. Thus bip(R′) has a bisimplicial edge
xy, which by Property 7 introduces both x and y; since the relation is reduced,
the corresponding concept must be a doubly irreducible, which is removed from
L(R). By Characterization 2, the chordal-bipartite graph has then an elimina-
tion scheme on bisimplicial edges, so we can repeat this step until the bipartite
graph becomes a chain graph, and the corresponding lattice a chain lattice, so
the lattice is indeed dismantlable. 2

Example 2. Using the relation from Figure 1, the dismantlable scheme is il-
lustrated below. In the lattice, we will successively remove doubly irreducibles
labeled: 3a, 1ad, 1b, and 2b, thereby obtaining a chain lattice.

3a to be removed:
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1ad to be removed:

1b to be removed:

2b to be removed:

Finally:

4 Algorithmic aspects

We will now examine how fast we can recognize that a given context corresponds
to a dismantlable lattice, using graph results.

Properties 6 and 7 can be extended to characterize the bisimplicial edges
of a chordal-bipartite graph as corresponding to irreducible elements or non-
irreducible introducers as follows:

Property 9. Let bip(R) be a chordal-bipartite graph with no universal vertex,
on vertex set V = O + A; let xy be a bisimplicial edge of bip(R), with x ∈ O
and y ∈ A; let Y = N(x), let X = N(y); let W = V − (X ∪ Y ); furthermore,
let Y ′ ⊂ Y be the set of vertices of Y which do not see W (i.e. Y ′ = {y ∈
Y |N(y)∩W = ∅}), let X ′ ⊂ X be the set of vertices of X which do not see W .

Then:

1. ∀x′ ∈ X ′, x and x′ are twin vertices, and thus define the same line in the
table of R; likewise, ∀y′ ∈ Y ′, y and y′ are twin vertices.
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2. (X,Y ) is a concept introducing all objects in X ′ and all attributes in Y ′.
3. (X,Y ) is a meet irreducible element iff there is some vertex y′′ in W which

sees all the vertices of X − X ′, and likewise (X,Y ) is a join irreducible
element iff there is some vertex x′′ in W which sees all the vertices of Y −Y ′.

Proof:

– X −X ′ 6= ∅ and Y − Y ′ 6= ∅ since there are no universal vertices.
– For x′ ∈ X ′, N(x′) = Y , so x and x′ are twin vertices (and likewise for y and
y′ ∈ Y ′).

– By Property 7, (X,Y ) introduces x and y; since for x′ ∈ X ′′ x and x′ are
twin vertices, (X,Y ) introduces x′, and likewise introduces any y′ ∈ Y ′′.

– If there is some x′′ which sees all of Y ′, then x cannot be the intersection of
a set of objects, since x′′ fails to see y, thus R is reduced w.r.t. x, so (X,Y ),
which introduces x, must be meet irreducible. The same reasoning applies
for y as join irreducible.

– A line x is the intersection of a set A of other lines iff N(x) =
⋂

z∈AN(z).
Let A = X − X ′; N(x) =

⋂
z∈AN(z) iff there is no vertex y′′ in W which

sees all the vertices of X − X ′. Thus (X,Y ) is a meet irreducible element
iff there is some vertex y′′ in W which sees all the vertices of X −X ′, and
likewise (X,Y ) is a join irreducible element iff there is some vertex x′′ in W
which sees all the vertices of Y − Y ′.

Illustration for the proof of Property 9.

2

As a consequence of Property 9, any bisimplicial edge xy corresponds to a
mixed introducer; either x or y can be removed by reducing the relation, or
N(x) ∪N(y) corresponds to a doubly irreducible element of L(R).

As remarked above, removing a doubly irreducible from a lattice will always
define a sublattice [20]; however, when one removes the bisimplicial edge which
corresponds to a mixed introducer which is not irreducible, one does not obtain
a sublattice, as illustrated below.

Example 3. Figure 2 shows a chordal-bipartite graph which has a bisimplicial
edge xy, as well as the lattices obtained before and after the removal of xy; in
the first lattice the concept labeled xy is not irreducible; the second lattice is
not a sublattice of the first lattice.

Fortunately, we have tools which enable us to avoid using such a bisimpli-
cial edge. In fact, in order to preserve a sublattice, it is sufficient to eliminate
a bisimplicial edge which corresponds to an irreducible element, as summarized
below:
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Bisimplicial edge xy Before removing xy After removing xy

Fig. 2. Removing a bisimplicial edge does not necessarily produce a sublattice.

Property 10. Let xy be a bisimplicial edge, let Y = N(x), let X = N(y), let
(X,Y ) be the corresponding concept. Then:

– If (X,Y ) is a doubly irreducible element, the removal of (x, y) from R re-
moves concept (X,Y ).

– If (X,Y ) is a meet irreducible element but not a doubly irreducible element,
introducing x, then the removal of (x, y) from R will cause y to disappear
from the label of concept (X,Y ), which thus becomes (X,Y − {y}), which
remains a meet irreducible element introducing x; all the other labels remain
unchanged and the lattice is preserved.

– If (X,Y ) is a join irreducible element but not a doubly irreducible element,
introducing y, then the removal of (x, y) from R will cause x to disappear
from the label of concept (X,Y ), which thus becomes (X − {x}, Y ), which
remains a join irreducible element introducing y; all the other labels remain
unchanged and the lattice is preserved.

Results on chordal-bipartite graphs enable us to repeatedly find a bisimplicial
edge which is a join irreducible element very efficiently, using the following well-
known characterization of chordal-bipartite graphs:

Characterization 11. A bipartite graph is chordal-bipartite iff its matrix can
be arranged so that it contains no Γ (a Γ is a 2 × 2 submatrix with the unique
0 entry at the lower right-hand corner).

Example 4. The matrices of relations bip(R) and bip(R) from Figure 1 may be
reordered into Γ -free matrices:

R a d b c

3 ×
1 × × ×
2 × ×
4 ×

R c b d a

1 ×
3 × ×
4 × × ×
2 ×
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The first non-zero entry of such a Γ -free matrix will yield a desirable bisim-
plicial edge:

Lemma 12. [22] Let M be a Γ -free matrix of a chordal-bipartite graph bip(R),
let x be the object which is the first row of M , let Y be the set of neighbors of x
in bip(R); then the neighborhoods of the attributes in Y can be totally ordered by
inclusion, and this ordering corresponds to the ordering on the columns of M .

Note that dually, the attribute y which is the first column of a Γ -free matrix
will have a similar ordering on the neighbors of y.

Note also that this neighborhood inclusion is reminiscent of the ’simple ver-
tices’ of strongly chordal graphs used for the same purpose in [8] to dismantle
co-atomistic dismantlable lattices.

As a consequence of Lemma 12, Property 9 and Property 10, the first non-
zero entry on the first row of a Γ -free matrix will define a bisimplicial edge which
corresponds to a join irreducible element.

Thus, because removing the first non-zero entry of a Γ -free matrix preserves
the Γ -free property, one can derive from a Γ -free matrix an elimination scheme
on join irreducible elements of the corresponding dismantlable lattice. At each
step eliminating a bisimplicial edge, either the structure of the lattice remains
unchanged, or a doubly irreducible element is removed from the lattice.

Of course, dually choosing the entries of the first column and traversing them
from top to bottom before going on to the second column and so forth will yield
an ordering on bisimplicial edges which correspond to meet irreducible elements.

Example 5. In Example 2, the ordering illustrated on the elimination of doubly
irreducibles from L(R) is the one suggested by the corresponding Γ -free matrix
from Example 4. Notice how edges 1a and 1d are removed simultaneously with a
doubly irreducible introducing 1, a and d, because the previous removal of edge
3a has made a and d twin vertices.

From the results discussed above, we could deduce the already known pro-
perty that a dismantlable lattice L(R) has at most |R| elements.

Chordal-bipartite graphs with n vertices and m edges can be recognized
in O(min(n2, m logn)) time [18, 19, 23] by computing a matrix with a ’doubly
lexical ordering’; the graph is chordal-bipartite if and only if this matrix has no
Γ . Thus an elimination scheme on ’good’ bisimplicial edges of a chordal-bipartite
graph bip(R) can be found in O(min(n2, m logn)) time, where n = |O| + |A|,
and m = |R|.

Given a Γ -free matrix, the maximal bicliques can be computed in time O(n+
m) [16] using the ordering from left to right and from top to bottom suggested
by the Γ -free matrix; a cheap pre-processing step enables the user to decide
which new sets of twin vertices appear during the elimination process. However,
the maximal bicliques are not, in general, computed in an order corresponding
to a doubly irreducible elimination scheme of the lattice. In a reduced relation,
every bisimplicial edge corresponds to a doubly irreducible element of the lattice;
if we reduce the relation after each elimination step of a bisimplicial edge, we
will find an elimination scheme on doubly irreducible elements. Doing this in
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a straightforward fashion would however be more costly than computing all
the maximal bicliques, constructing the lattice, and finding doubly irreducible
elements in the Hasse diagram.

5 Dismantlable lattices whose mirror is dismantlable

We shall now investigate lattices which are dismantlable and whose mirror lat-
tice is also dismantlable. Rival [20] stated the following result on dismantlable
lattices:

Lemma 13. [3] Every planar lattice is dismantlable.

We will show a stronger relationship between planar lattices and dismantlable
lattices:

Theorem 14. Let R be a binary relation associated with the concept lattice
L(R) and the bipartite graph bip(R); let R be the mirror relation associated with
the concept lattice L(R) and the bipartite graph bip(R).
Then the following are equivalent:

(1) L(R) is a dismantlable lattice and its mirror lattice L(R) is also a dismant-
lable lattice.

(2) L(R) is a planar lattice and its mirror lattice L(R) is also a planar lattice.
(3) bip(R) is chordal-bipartite and its mirror bipartite graph bip(R) is also

chordal-bipartite.

(1) is equivalent to (3) by Characterization 8. We will show that (3) is equiv-
alent to (2).

We will need some extra definitions and properties on bipartite graphs:

Definition 15.
The chain dimension of a bipartite graph bip(R) is the minimum number of
chain graphs which give bip(R) as their intersection [22].
The chain cover number of a bipartite graph bip(R) is the minimum number
of chain graphs needed to cover the edge set of bip(R).

Clearly, the chain dimension of a bipartite graph bip(R) is the chain cover
number of its mirror bip(R) and vice-versa.

Theorem 16. [3, 6, 11, 22, 12] Let R be a binary relation; then L(R) is a planar
lattice if and only if the chain dimension of the corresponding bipartite graph
bip(R) is at most 2.

Thus L(R) is a planar lattice iff bip(R) can be covered by at most 2 disjoint
chain graphs. Abueida, Busch and Sritharan [2] studied the chain cover number
of a bipartite graph. In particular, they showed the following result:

Property 17. [2] If bip(R) is a chordal-bipartite graph, then the chain cover
number of bip(R) is equal to the size of a largest induced matching.
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An induced matching is a set of edges such that no two edges are joined by
an edge in the graph; as a result, an induced matching of size i corresponds to
an induced iK2.

Now when a chordal-bipartite graph has a mirror which is also chordal-
bipartite, it can have no induced 3K2:

Lemma 18. bip(R) is chordal-bipartite with no induced 3K2 iff its mirror bi-
partite graph bip(R) is also chordal-bipartite with no induced 3K2.

Proof: Let bip(R) be a chordal-bipartite graph with no induced 3K2; the mir-
ror of a 3K2 is an induced C6 (a chordless cycle on 6 vertices), but bip(R) by
definition of a chordal-bipartite graph has no C6, so bip(R) has no 3K2; suppose
bip(R) fails to be chordal-bipartite; any chordless induced cycle of length 10 or
more contains a 3K2, so bip(R) must have a C6 or a C8 (bipartite graphs have
only even cycles); if bip(R) has a C6, bip(R) has a 3K2, which is impossible by
our hypothesis; the mirror of a C8 is a C8, so if bip(R) has a C8, bip(R) has a
C8, which is impossible since bip(R) is chordal-bipartite. 2

Corollary 19. If bip(R) is a chordal-bipartite graph with no 3K2 then L(R) is
a planar lattice.

Proof: Let bip(R) be a chordal-bipartite graph with no 3K2; by Property 17,
then the chain cover number of bip(R) is at most 2; by Theorem 16, L(R) is a
planar lattice. 2

Combining this with the results presented above, we obtain the following:

Theorem 20. The following are equivalent:

(1) L(R) is a planar lattice and its mirror lattice L(R) is also a planar lattice
(2) bip(R) is chordal-bipartite and its mirror bipartite graph bip(R) is also

chordal-bipartite.

Proof: Let bip(R) be a chordal-bipartite graph whose mirror is also a chordal-
bipartite graph. bip(R) has no 3K2, so by Lemma 18, both bip(R) and bip(R) are
chordal-bipartite with no induced 3K2; by Corollary 19, both L(R) and L(R)
are planar lattices.

Conversely, if both L(R) and L(R) are planar lattices, then by Lemma 13,
L(R) and L(R) are dismantlable, and by Characterization 8 bip(R) and bip(R)
are both chordal-bipartite. 2

Example 6. In Figure 1 from Example 1, both bip(R) and bip(R) are chordal-
bipartite, and both L(R) and L(R) are planar lattices.

If, however, we add an element (4, e) to the relation, obtaining the new rela-
tion R′, bip(R′) remains chordal-bipartite, but it contains a 3K2: {3a, 2b, 4e}; its

lattice L(R′) is dismantlable and planar, but the mirror lattice L(R′) is neither
dismantlable nor planar.

56



R a b c d e

1 × × ×
2 × ×
3 ×
4 × × R′ and its mirror R′

R a b c d e

1 × ×
2 × × ×
3 × × × ×
4 × × ×

L(R′) and its mirror L(R′
)

Fig. 3. A relation R′ which defines a chordal-bipartite graph which contains a 3K2, its
mirror R′, the associated lattices L(R′) and its mirror L(R′

). L(R′
) fails to be planar

and dismantlable.

Definition 21. We will define as auto-dismantlable a lattice which is disman-
tlable and whose mirror lattice is also dismantlable, and we will likewise define
the notions of auto-planar lattice and auto-chordal-bipartite graph.

With the results from Section 4, auto-dismantlable and auto-planar lattices can
be recognized in O(n2) time, where n = |O|+ |A|.

6 Conclusion and perspectives

We have characterized the class of relations which correspond to dismantlable
concept lattices as defining chordal-bipartite graphs. We have uncovered a strong
connection between dismantlability and planarity, by showing that a lattice is
auto-dismantlable if and only if it is auto-planar.

Using relation R, we can decide in O((|O| + |A|)2) time whether L(R) is
a dismantlable lattice; we leave open the question of defining an elimination
scheme on doubly irreducible elements of L(R) in O((|O|+ |A|)2) time.

Both the relations in Example 4 have the ’consecutive ones’ property (the
binary matrix can be ordered so that on each row, the ’ones’ are consecutive);
the corresponding bipartite graph is chordal-bipartite and is called a convex
graph; [12] showed that relations with the consecutive ones property are planar;
however, not all chordal-bipartite graphs with no 3K2 are convex graphs, and
some convex graphs may have a 3K2, so convex graphs are not necessarily auto-
chordal-bipartite, and the corresponding lattice is not necessarily auto-planar.

Chordal-bipartite graphs are characterized as bipartite graphs from which
one can repeatedly remove a vertex which is not the center of a P5 [15] (a
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P5 is an induced chordless path on 5 vertices); the first row and column of a
Γ -free matrix define such vertices [22]. The removal from the relation of the
corresponding object or attribute could be interesting to examine.

We have yet to characterize what happens exactly in the mirror lattice L(R)
of an auto-dismantlable lattice L(R) when a doubly irreducible is removed from
L(R).

Finally, the recognition of chordal-bipartite graphs in linear O(|R|) time is a
popular open graph problem [22]. We hope that in the light of dismantlability
this problem can be solved.
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