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Abstract

Generating concepts defined by a binary relation between a
set P of properties and a set O of objects is one of the important
current problems encountered in Data Mining and Knowledge
Discovery in Databases.

We present a new algorithmic process which computes all the
concepts, without requiring an exponential-size data structure,
and with a good worst-time complexity analysis, which makes it
competitive with the best existing algorithms for this problem.
Our algorithm can be used to compute the edges of the lattice
as well at no extra cost.

Keywords: Concept Lattice, Galois lattice, maximal rectangles, concept gen-
eration.

1 Introduction

In the context of Data Base Management and Data Mining problems, data
bases are often represented by a binary relation between a set P of properties
and a set O of objects. One of the ways of analyzing the data contained in
the base is to examine all possible combinations of elements of the relation into
maximal rectangles. These rectangles, called concepts, are organized into a
hierarchical structure called a Galois lattice or concept lattice. This theory,
though studied by mathematicians as far back as the nineteenth century (see
[1]), was made popular and developed by Wille and his team ([12]), and remains
one of the important current trends of research in Data Mining and Artificial
Intelligence: concept lattices are used in fields as varied as the discovery of
association rules in Data Bases ([25]), the generation of frequent item sets ([30]),
machine learning ([20], [22]), software engineering ([16]) and the reorganization
of object hierarchies ([15], [4]).

A concept lattice is, in general, of exponential size. As a consequence, it is
of primary importance to be able to generate each concept efficiently. One of
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the problems is to avoid multiple generation of the same concept. This requires
either storing all the previously generated concepts and running through this
set at each step of the algorithm, using an efficient data structure; this approach
requires exponential time. Another solution is to not store all the concepts, but
nevertheless find a technique to avoid redundancy.

Concept generation has given rise to a steady flow of research for the past
thirty years. One of the first algorithms to be published in this field is due to
Malgrange ([21]); this algorithm generates successive layers of the lattice, by
defining possible candidates by combinations of concepts of the previous layer;
it has an exponential worst-time complexity per generated concept; a similar
process was later presented by Chein ([7]). These algorithms require exponential
time per generated concept, as at each step all previously generated concepts
need to be compared with the current candidate. Norris ([23]) improved these
with an incremental approach. All these algorithms require exponential space.

Ganter’s algorithm ([11]) was an important improvement, as it runs fast
(O(|P|2|O|) per concept) without requiring exponential space; it introduces the
interesting notion of lectic order, which avoids scanning all the possible subsets
of properties, without, however, avoiding re-computing the same concept O(|P|)
times. One of its drawbacks is that it does not compute the edges of the Hasse
diagram of the lattice.

Bordat’s algorithm ([6]) can run slightly faster (O(|P+O|2.376) per concept),
and can be implemented to run in the same time as Ganter’s algorithm. Bordat’s
algorithm is very different from the previous ones, as it works with a local
approach: given any concept and the relation, it can generate all the successors
of this concept (called the cover of the concept) in either O(|P + O|2.376) or
O(|P|2|O|). This enables it to generate, at no extra cost, the edges of the
lattice, which is often important to compute in applications. It introduces a
data structure to store the already computed concepts, which requires only
O(|P|) time to check whether a given concept has already been generated.

This time complexity was recently improved by Nourine and Raynaud ([24])
to O(|P|2) per concept, using an approach based on Norris’ algorithm, with
an exponential data structure different from Bordat’s to store the concepts;
however, it has been shown to perform poorly in practise, as illustrated by
Kuznetsov and Obiedkov’s survey on concept generation algorithms ([18]).

Many other algorithmic processes now exist, such as [19], as well as many
specialized algorithms to deal with practical data, using for example incremental
approaches or a decomposition of the data (see e.g. [31], [9]).

The modern concept generation algorithms can be put into one of two classes:
either they do not require exponential space, and the best such algorithms is
Ganter’s in O(|P|2|O|) per concept. Or they use exponential space, and they
run faster, at least in the worst case: O(|P+O|2.376) for Bordat’s and O((|O|+
(|P|)(|O|) for Nourine and Raynaud’s.

In this paper, we address the issue of examining Bordat’s approach more
closely. Various implementations have been made for Bordat’s algorithm; the
original paper presents a Breadth-First Search, but the algorithm can also be
used in a Depth-First fashion. In this paper, we formally show that Bordat’s
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algorithm can run without its exponential data structure, and in fact requires
only polynomial space.

Our approach is based on our experience on graphs. In [6], Bordat used
a directed tripartite graph to handle the relation. In [3], Berry and Sigayret
proposed a different encoding into an undirected co-bipartite graph for which
they established a one-to-one correspondence between the concepts of the lattice
and the minimal separators of the graph (the reader is referred to [3] and [29]
for a full explanation on this relationship.) This is algorithmically promising
because, in the past decade, much research has been done on minimal separator
generation (see [17], [28], [2]) as well as on the structural properties of minimal
separators. [3] pointed out that, using the underlying co-bipartite graph and
these recent results on the emerging theory of minimal separation, the current
best algorithms for generating concepts could easily be matched both in terms of
time and space. In particular, they showed that generating the concepts defined
by a binary relation is equivalent to generating the minimal ab-separators of a
corresponding graph: they thus matched the best complexity due to Nourine
and Raynaud by using the minimal ab-separator algorithm due to Shen and
al. ([27]), which claims the same O((|P| + |O|)2) time per generated object.
Though we will not explicitly use results on minimal separation, they underly
our approach; in our definitions, we will retain graph terms such as ’domination’
and ’maxmod’.

The algorithmic process we use here presents similarities with [6]. It uses
each concept A × B to generate its cover in the lattice, working at each step
on a subrelation. However, the fashion in which we compute the cover of each
concept is different and more efficient.

Our contribution in this paper is threefold:

• First, we present an efficient linear-time process, based on graph partition-
refinement techniques, to group together the properties which correspond
to similar columns in the relation. This is important, because it is a
mandatory first step in computing the cover of an element, as similar
properties will always appear together.

• Second, we explain how to let each concept inherit information on the pre-
viously processed concepts, in order to avoid generating the same concept
more than once, a breakthrough in concept generation. This is important,
because as discussed above, the process presented in Bordat’s original pa-
per (as well as most of the other concept generation algorithms) requires a
data structure of exponential size to check whether a concept has already
been generated. In the present paper, we are able to preserve Bordat’s
good complexity and strong structural approach without requiring any
data structure.

• Third, we note that much useful information can be inherited by a con-
cept from its predecessors, which enables us to avoid recomputing all the
information at each step in the course of a Depth-First traversal, using
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a polynomial-sized data structure which is transmitted from ’father con-
cept’ to ’son’, thus improving the running time to O(|P||O|) time per
generated concept, plus a cost of O(|P|2|O|) time per maximal branch of
the recursive tree induced by the Depth-First search.

The paper is organized as follows: in Section 2, we give some preliminary
definitions. In Section 3, we explain our approach in more detail, illustrating it
with a simple example, which we use thoughout the paper. We then show how
to partition the properties into classes which share the same columns, and then
go on to show how we avoid processing a concept several times. We propose a
general process which simplifies and improves Bordat’s algorithm. In Section 4,
we further improve this by using our new data structure, the domination table,
to transmit inherited information when moving up along a chain of the lattice.

2 Preliminaries

In all this work, ⊂ denotes strict inclusion, as opposed to ⊆. If the intersection
of two sets is empty, we will often use + to denote their union. For notions on
ordered sets not defined here, the Reader is referrred to [5] and to [1].

Given a finite set P of properties (which we will denote by lowercase letters in
our examples) and a finite set O of objects (which we will denote by numbers), a
binary relation R is defined as a subset of the Cartesian product P×O. R is the
complement of relation R (i.e. R = (P×O)−R). The triple (P ,O, R) is called
a context. Such a relation is often represented by a table, where elements of
R are denoted by crosses or by ones. Given an element of P ×O, we will often
refer to it as a one if it is in R, and as a zero if it is not. |R| will denote the
number of ones, and |R| the number of zeroes. We will use n to denote |P+O|.
For a property x, we will denote R[x] the set of objets which R puts in relation
with x: R[x] = {y ∈ O|(x, y) ∈ R}; for an object x, R[x] will be defined in a
similar way: R[x] = {y ∈ P|(y, x) ∈ R}. If X is a set of properties or a set of
objects, we will denote R[X ] the set

⋂
x∈X R[x]. For X ⊆ P , Y ⊆ O, we will

denote by R(X, Y ) the subrelation R ∩ (X × Y ).
A concept, also called a maximal rectangle or closed set of R, is a sub-

product A × B ⊆ R such that ∀x ∈ (O − B), ∃y ∈ A | (y, x) �∈ R, and ∀x ∈
(P − A), ∃y ∈ B | (x, y) �∈ R. A is called the intent of the concept, B is called
the extent. Brackets are often omitted when denoting intents and extents.
Given the intent A of a concept, it is easy to compute its extent: B = R[A].
Thus in the rest of this work, we will often denote a concept only by its intent.

The concepts, ordered by inclusion on the intents, or, dually, by inclusion
in the extents, define a lattice, called a concept lattice or Galois lattice.
In such a lattice, given two concepts A1 × B1 and A2 × B2, then A1 ⊂ A2 iff
B2 ⊂ A2. P and O thus play a symmetric role, and can be interchanged in
the complexity discussions throughout this work. Concepts are often referred
to as elements of this lattice. A lattice is represented by its Hasse diagram:
transitivity and reflexivity edges are omitted. In the rest of this work, when
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we refer to a path in the lattice, we mean a path in the Hasse diagram of the
lattice.

Such a lattice has a smallest element, called bottom, and a greatest element,
called top. A path from bottom to top is called a maximal chain of the lattice.

We will say that a concept A′×B′ is a successor of concept A×B if A ⊂ A′

and there is no intermediate concept A′′ ×B′′ such that A ⊂ A′′ ⊂ A′. The set
of successors of an element is called the cover of this element. The successors
of the bottom element are called atoms. A concept A′ × B′ is a descendant
of concept A × B if A ⊂ A′. The notions of predecessor and ancestor are
defined dually.

It is important to note that a concept A′ × B′ is a descendant of concept
A × B iff A ⊂ A′, and that all the concepts whose intent contains A form a
sublattice, the bottom element of which is A×B; this sublattice is the concept
lattice of subrelation R(P , B).

Example 2.1 We now introduce the example which we will use throughout this
paper, using binary relation R, given by the table below; the associated concept
lattice L(R) is shown in Figure 1.

Set of properties:
P = {a, b, c, d, e, f, g, h},

Set of objects:
O = {1, 2, 3, 4, 5, 6}.

R a b c d e f g h
1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × ×
6 × ×

The bottom element is ∅ × 123456; the atoms are ah× 236, b× 123, c× 125 and
d×145; bc (or, equivalently, bc×12) is a successor of b, (∅, b, bc, abcgh, abcdefgh)
is a maximal chain of the lattice, the cover of b is {abgh, bc}.

abcdefgh x φ

ah x 236 b x 123 c x 125 d x 145

cd x 15abgh x 23 bc x 12 de x 14

abfgh x 3 abcgh x 2 bcde x 1

φ   x 123456

Figure 1: Concept lattice L(R) of relation R.
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3 A general algorithmic process

3.1 How the algorithm works

We will begin by giving the general idea of the process we use.
Let us first make the trivial preliminary observation that if the relation has

columns containing only ones, the corresponding properties can be discarded as
non-informative, as clearly they will be included in every intent of the lattice;
in particular, they will constitute the intent of the bottom element.

Once the relation has been purged of its columns of ones, knowing which
properties will appear in the atoms is simply a question of inclusion between
columns: any property x such that there is some property y with R[x] ⊂ R[y] will
NOT appear in any atom, and conversely any x whose column is not properly
included in any other will appear in an atom. Furthermore, if R[x] = R[y], then
x and y will ALWAYS appear together in every intent, whether atomic or not.
In this case, x and y can be considered as a single property, and will be grouped
together inside an equivalence class we call a maxmod.

In our example, R[g] ⊂ R[a], R[g] ⊂ R[b], R[e] ⊂ R[d], R[f ] ⊂ R[a], R[f ] ⊂ R[b],
and R[f ] ⊂ R[g]. If we accordingly discard e, f and g, what is left, i.e. a, b, c, d
and h will constitute the atoms; since R[a] = R[h], we know that a and h will
always appear together; since there are no other equal columns, the atoms will
be ah, b, c and d.

The sublattice of which a given concept A × B is the bottom element is
exactly the lattice of the subrelation R(P , B); since in this subrelation, the
elements of A correspond exactly to the columns of ones, the atoms of this
lattice are defined by the properties of R(P − A, B) whose columns are not
properly included in any other.

The algorithm from [6] works according to these principles. For each concept
which is processed, it either checks all pairs of properties for row inclusion (hence
the O(|P|2|O|) complexity), or it pre-processes an intermediate tripartite graph
in O(nα), which is the time required to achieve transitive closure or, equiva-
lently, matrix multiplication; currently, α is approximately 2.376 ([8]). After
this, a pair of properties can be checked for row inclusion in O(1) time, and
thus the atoms can be found in O(n2) time by comparing all possible pairs,
which is less than the O(nα) pre-processing cost. The algorithm is presented
in a Breadth-First implementation: it repeatedly dequeues the next concept,
computes its cover, and enqueues each element of the cover which has not al-
ready been generated. Note that this process could just as well be implemented
in a Depth-First fashion, by using a stack instead of a queue. The main draw-
back to Bordat’s approach is that it requires a potentially exponential-size data
structure to store all the already computed concepts.

We will show later in this section how to dispense with this data structure. In
Section 4, we will use the property that row inclusion is inherited by successors:
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if in the subrelation corresponding to a concept A × B we have R[x] ⊆ R[y],
then this will remain true in the smaller subrelation defined by any descendant
of A×B.

3.2 Processing each concept only once

We will need some additional formal definitions of the notions discussed above.

Definition 3.1 Let (P ,O, R) be a context, let x, y ∈ P. We will say that x
dominates y if R[x] ⊆ R[y].

Definition 3.2 Given a context (P ,O, R), a maxmod of R is a set X of prop-
erties such that ∀x, y ∈ X, R[x] = R[y] and ∀z ∈ P −X, R[z] �= R[x]. In this
case, R[X ] is simply R[x], where x is an arbitrary element of X. The degree
of a maxmod X is |R[X ]|.

Definition 3.3 Given two maxmods X and Y , we will say that X dominates
Y if R[X ] ⊂ R[Y ]. A maxmod X is said to be dominating if there is some max-
mod Y which it dominates, and non-dominating if there is no other maxmod
which it dominates.

Theorem 3.4 ([3]) Given a concept A × B, A + X is the intent of a concept
belonging to the cover of A × B iff X is a non-dominating maxmod of R(P −
A, B). In this case, the extent of A + X is B ∩R[X ].

Our stated goal is to process each concept exactly once, without using a
data structure to store all the already-computed concepts. Using a Depth-
First approach, if a non-dominating maxmod X is called first, then all the
concepts whose intent contain X will be generated; hence if we do not want
these concepts to be generated another time, we can give all the other non-
dominating maxmods of R the information that no concept containing X should
be stacked again. We can use this principle recursively on each sublattice which
is processed. The same principle can be used for a Breadth-First approach,
essentially by forcing the corresponding spanning tree to be the same as the one
described by the recursive approach. Note that the process could be parallelized
easily.

We give below the general algorithm for a Breadth-First approach, using a
set Marked which prevents from processing a given concept more than once.
Note that if a maxmod Y dominates a maxmod X , and if all the concepts
containing X have been generated, then all the concepts containing Y have also
also been generated; with no extra cost, we can add to our Marked set all these
Y .
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BF-CONCEPTS

input : A context C = (P ,O, R).
output : The concepts defined by C are printed.
Initialize Queue with bottom element and Marked as empty;
repeat

0. {A×B, Marked } ← DEQUEUE;
1. Compute the partition Part of P −A into maxmods;
2.
Find the set ND of non-dominating maxmods of subrelation R(P−A, B);
Compute the cover of A×B (if desirable);
3.
New← ND from which any maxmod containing an element of Marked
has been removed;
for X in New do

PRINT (A + X)× (B ∩R[X ]);
ENQUEUE({ (A + X)× (B ∩R[X ]), Marked });
Y ← union of all maxmods which dominate X ;
Marked←Marked∪X ∪ Y ;

until Queue is empty;

The corresponding iterative Depth-First algorithm can be deduced from BF-
CONCEPTS by using a stack instead of a queue, and replacing ENQUEUE
with PUSH, and DEQUEUE with POP. The Depth-First approach is easily
implemented by a recursive algorithm, which we give below.

DF-CONCEPTS

input : A concept A×B, a subset Marked of P .
output : The not yet encountered descendants of A×B are printed.
1. Compute the partition Part of P −A into maxmods;
2.
Find the set ND of non-dominating maxmods of subrelation R(P −A, B);
Compute the cover of A×B (if desirable);
3.
New ← ND from which any maxmod containing an element of Marked
has been removed;
for X in New do

PRINT (A + X)× (B ∩R[X ]);
DF-CONCEPTS( (A + X)× (B ∩R[X ]) , Marked );
Y ← union of all maxmods which dominate X ;
Marked←Marked∪X ∪ Y ;
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The bottom element which is used to initialize both processes is (U × O),
where U is the set of properties which correspond to a column of ones (i.e.
U = {x ∈ P|R[x] = O}).

Algorithm DF-CONCEPTS is initially called on the bottom element on a
Marked set initialized with U by DF-CONCEPTS( (U ×O) , U ).

Both of the above algorithms generate all the concepts as well as the edges of
the Hasse diagram of the lattice, without requiring a data structure to store
the already generated concepts. This is an important improvement, as it makes
the algorithmic step purely local; for instance, it could be implemented with a
parallel approach.

We will remark that the recursive approach requires only polynomial space,
while the Breadth-First approach may require exponential space; this is because
a concept lattice is of small height (less than |P|), but may be of exponential
width (the lattice defined by the power set is an example of this); using a
Breadth-First approach requires storing the entire width into the queue at some
time. By contrast, the recursive stack will only contain at a given time at most
a set of elements which belong to a common maximal chain, as well as the cover
of each of these elements, which adds up to at most |P|2 entries, each requiring
O(|P|) space.

Both algorithms can easily be implemented in O(|P|2|O|) per concept by
pairwise comparisons of the properties for row-inclusion in order to find the
partition into maxmods and the set ND of non-dominating maxmods (Steps 1
and 2).

We will now examine how we can achieve these Steps 1 and 2 more efficiently.

3.3 Using partition refinement to compute the partition
into maxmods

The first problem we address is that of efficiently computing the partition into
maxmods. In order to avoid spending O(|P|3) time on this, we use a technique of
partition refinement which repeatedly uses the ones of a line to split the current
partition of the property set. This process was originally implicitly used in the
famous graph algorithm known as LexBFS, introduced by Rose, Tarjan and
Lueker ([26]) to recognize chordal graphs efficiently; Hsu and Ma in [14] later
explicitly used partition refinement to find the partition into maximal clique
modules of a chordal graph.
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Algorithm MAXMOD-PARTITION

input : A context (P ,O, R).
output : An ordered partition Part=(K1, ..., Kp) of P into the maxmods

of R.

Part← (P);
for y ∈ O do

foreach class K of Part such that |K| > 1 do
K ′ ← K ∩R[y];
K ′′ ← K −R[y];
if K ′ �= ∅ and K ′′ �= ∅ then

In Part, replace K by K ′ followed by K ′′;

Return Part;

Example 3.5 Let us run algoritm MAXMOD-PARTITION on relation of Ex-
ample 2.1.
Initially: Part=({a, b, c, d, e, f, g, h}).
Step 1: choose (for example) object 1 first; R[1] = {b, c, d, e}.
Part contains only one class K = {a, b, c, d, e, f, g, h} which is split into K ′ =
{b, c, d, e} and K ′′ = {a, f, g, h}. Part becomes ({b, c, d, e} , {a, f, g, h}) denoted
bcde | afgh.
Step 2: with object 2; R[2] = {a, b, c, g, h}. Class {b, c, d, e} is split into {b, c}
and {d, e}; Class {a, f, g, h} is split into {a, g, h} and {f}. Part becomes:
bc | de | agh | f .
Below is the entire succession of partition refinement steps:

abcdefgh

↓ R[1] = {b, c, d, e}
bcde | afgh

↓ R[2] = {a, b, c, g, h}
bc | de | agh | f

↓ R[3] = {a, b, f, g, h}
b | c | de | agh | f

↓ R[4] = {d, e}
b | c | de | agh | f

↓ R[5] = {c, d}
b | c | d | e | agh | f

↓ R[6] = {a, h}
b | c | d | e | ah | g | f
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Property 3.6 Let (P ,O, R) be a context. Algorithm MAXMOD-PARTITION
computes the partition of P into maxmods.

Proof: Let (P ,O, R) be a context; let x1 and x2 be two elements of P . We
will show that x1 and x2 are in the same maxmod iff they stay in the same class
at the end of Algorithm MAXMOD-PARTITION.
At the beginning of the algorithm, x1 and 2 are in the same class.
⇒ If x1 and x2 are in the same maxmod, then R[x1] = R[x2]. When the

algorithm is processing an object y, x1 and x2 will remain in the same
class, which is K ′ if x1 ∈ R[y], and K” if x1 �∈ R[y].Thus no object can
separate x1 and x2 and they stay in the same class at the end of the
algorithm.

⇐ If x1 and x2 are not in the same maxmod, then R[x1] �= R[x2]. W.l.o.g.
let y be an object such that y ∈ R[x1]−R[x2]. When y is processed, if x1

and x2 are still in the same class K, they will be separated as x1 will go
into K ′ and x2 will go into K”.

�

It is easy to see that Algorithm MAXMOD-PARTITION can be imple-
mented in O(min(|R|, |R|)).

3.4 Computing the non-dominating maxmods

Once we have computed the partition PART into maxmods, we need to com-
pute the set ND of non-dominating maxmods. We will use an ordering on the
maxmods: we either order the maxmods by decreasing degree, or simply use
the ordered partition output by Algorithm MAXMOD-PARTITION.

In both cases, a given maxmod can dominate only maxmods which lie to
its left, with the effect that the leftmost maxmod is guaranteed to be non-
dominating. This property is trivial for the ordering by decreasing degree, and
too complicated to go into in this paper for ordering induced by Algorithm
MAXMOD-PARTITION.

We thus present the following process for computing the set of non-domina-
ting maxmods:
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Algorithm NON-DOMINATING-MAXMODS

input : A context (P ,O, R), and a partition Part=(K1, ..., Kp) of P
into maxmods of R, ordered either by Algorithm MAXMOD-
PARTITION or by decreasing degree of the maxmods.

output : The set ND of non-dominating maxmods.

ND← ∅;
repeat

1. X ← leftmost maxmod in PART; Remove X from PART;
2. ND ← ND+ {X} ;
3. Compute the maxmods which dominate X and remove them from
PART;

until PART is empty;

There are several ways of doing Step 3 of Algorithm NON-DOMINATING-
MAXMODS (which computes the maxmods which dominate X).

1. We can use Bordat’s original approach: Step 3 will begin with an O(|(P−
A)+B|α) pre-processing step in the subrelation R(P−A, B) corresponding
to the concept A × B which is being processed. After this, finding the
maxmods which dominate maxmod X can be done in O(|P|) time. Thus
each non-dominating maxmod can be found in O(|P|) time, and the entire
set in O(|P|2) time, which is less than the cost of the pre-processing.

2. We can dispense with the pre-processing: each maxmod is selected in
O(1) as leftmost in the remainder of the partition, and computing the
maxmods which dominate current maxmod X requires scanning the rela-
tion in O(|R|). This adds up to O(|R|) time per non-dominating maxmod
which is generated.

To process a concept A × B, Algorithm NON-DOMINATING-MAXMODS
either costs O(|(P −A) + B|α), if Bordat’s pre-processing is used, as discussed
above, or O(|R(P − A, B)|Δ), where Δ is the number of elements of the cover
of the concept in the lattice (Δ is in O(|P|)); in this case, each concept is
generated as many times as it has predecessors, costing O(|R|) each time. The
second version may be better if the number of predecessors of the concepts is
small.

Example 3.7 Let us run Algorithm NON-DOMINATING-MAXMODS on par-
tition Part=(b, c, d, e, ah, g, f) obtained in Example 2.1.
ND=∅.
Step 1: X ← {b} is a non-dominating maxmod. ND ← {{b}}. {b} is dom-
inated by {f} and {g}, as R[b] = {1, 2, 3}, R[f ] = {3} ⊂ R[b] and R[g] =
{2, 3} ⊂ R[b]. PART ← (c, d, e, ah).
Step 2: X ← {c} is a non-dominating maxmod. ND ← {{b}, {c}}. {c} is
neither dominating nor dominated. PART ← (d, e, ah).
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Step 3: X ← {d} is a non-dominating maxmod. ND ← {{b}, {c}, {d}}. {d}
is dominated by {e} as R[e] = {1, 4} ⊂ R[d] = {1, 4, 5}. PART ← (ah).
Step 4: X ← {a, h} is a non-dominating maxmod. ND← {{b}, {c}, {d}, {a, h}}.
PART ← ∅ and the algorithm stops. ND={{b}, {c}, {d}, {a, h}} will be out-
putted as the set of non-dominating maxmods.

Our preliminary experimentations suggest that the second version runs more
rapidly in most cases; it runs even faster if, after computing the partition into
maxmods, instead of computing the set of non-dominating maxmods, one first
removes all maxmods which contain a property belonging to the set Marked,
and then tests the leftmost remaining maxmod to check whether it is non-
dominating (it may fail to be so because of the removed maxmods); in practise,
it is non-dominating almost every time, so we run in linear time per generated
concept.

We will see in the next section how we can improve the worst-time complex-
ity.

According to Theorem 3.4, we can generate, given the set ND of non-dominating
maxmods, the cover of an element, as well as the corresponding edges of the
lattice. This process can obviously be removed from Step 2 of algorithms BF-
CONCEPTS and DF-CONCEPTS, if the purpose is only to reach each concept
once.

COVER

input : A concept A×B, set ND of non-dominating maxmods of R(P −
A, B).

output : The cover of A×B is printed.
for X in ND do

PRINT (A + X)× (B ∩R[X ]);
// which belongs to the cover of A×B

PRINT (A×B , (A + X)×(B∩R[X ]) );
// which is an edge of the Hasse diagram

4 Using inherited domination information

In this section, we present a new data structure which enables us to efficiently
store information on the domination relation, and avoids recomputing all such
information as the depth-first concept generating process moves up along a chain
of the lattice.

4.1 Data structure: the domination table

In order to improve the worst-time behavior of the algorithmic process de-
scribed above, we propose a more sophisticated approach to computing the
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non-dominated maxmods, which uses the fact that trivially, domination is in-
herited when moving up in the lattice:

Property 4.1 Let A1×B1 and A2×B2 be concepts, with A1 ⊂ A2 (i.e. A2×B2

is a descendant of A1 × B1). Then if x dominates y in R(P−A1, B1) and
x, y ∈ P−A2, then x dominates y in R(P−A2, B2).

To efficiently answer requests on the set of non-dominating maxmods, we
use a domination table containing information on the current subrelation. As
this information can be inherited along a maximal chain, maintaining this ta-
ble in the course of the Depth-First traversal along a maximal chain avoids
recomputing the entire domination information at each step of the algorithm.

The inheritance mechanism involved is the following: when moving up into
the lattice, say from a concept A × B corresponding to the subrelation R(P −
A, B) to a second concept (A + X)× (B ∩R[X ]), covering the first, and corre-
sponding to the subrelation R(P − (A + X), B ∩R[X ] ), two things happen:

1. Set X of properties disappear from the relation.
2. Set B −R[X ] of objects disappear from the relation.

In our example, when moving up from the bottom element ∅ × O to element
ah × 236, the new subrelation defined will be R(P − {a, h}, {2, 3, 6}), so that
properties a and h will disappear from the relation, as well as objects 1, 4 and
5.

Our idea, previously used to maintain Galois sub-hierarchies in [4], is to list
into a table L, for each pair of properties (x, y), the objects which prevent x
from dominating y: an object i will appear in the list L[x, y] iff (x, i) ∈ R and
(y, i) �∈ R.

Example 4.2 The corresponding lists for our example are given in table L
below:

L a b c d e f g h
a ∅ {1} {1, 5} {1, 4, 5} {1, 4} ∅ ∅ ∅
b {6} ∅ {5} {4, 5} {4} ∅ ∅ {6}
c {3, 6} {3} ∅ {4} {4} {3} {3} {3, 6}
d {2, 3, 6} {2, 3} {2} ∅ ∅ {3} {2, 3} {2, 3, 6}
e {2, 3, 6} {2, 3} {2, 5} {5} ∅ {3} {2, 3} {2, 3, 6}
f {2, 6} {1, 2} {1, 2, 5} {1, 4, 5} {1, 4} ∅ {2} {2, 6}
g {6} {1} {1, 5} {1, 4, 5} {1, 4} ∅ ∅ {6}
h ∅ {1} {1, 5} {1, 4, 5} {1, 4} ∅ ∅ ∅

c will dominate a when objects 1 and 5 have disappeared as L[c, a] = {1, 5}.

The table can be queried as follows:
• A property x dominates another property y iff L[x, y] = ∅.
• x and y are in the same maxmod iff L[x, y] = L[y, x] = ∅.
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Table L contains at most |P|.min(|R|, |R|) bits, since a given column x will
contain in its lists only objects which with x define ones of R, while row x will
contain in its lists only objects which with x define zeroes of R.

When moving up from one concept to one of its successors in our recursive
algorithmic process, updating table L means for each (x, y)-pair in P2, removing
from list L[x, y] the objects which disappear from the relation. Actually, we are
only concerned with the number of properties which a property x dominates
in a given relation, so that cardinalities are sufficient for our data structure:
a maxmod X will be non-dominating when, for any x ∈ X , the number of
properties which x dominates is exactly |X |. We will thus use L as an underlying
abstract data type, and implement it with a cardinality table T , which contains
numbers between 0 and |O|, T [x, y] representing the size of list L[x, y]. Property
x dominates property y iff T [x, y] = 0.

In order to have rapid access to this information, we also keep a table D,
scanning P , where D[x] gives the number of properties y such that T [x, y] = 0,
i.e. the number of properties which x dominates. A maxmod X will thus be
non-dominating if and only if for an arbitrary x ∈ X , D[x] = |X |, and the query:
’Which are the non-dominating maxmods?’ can be answered in very efficient
O(n) time using table D.

The process for constructing the initial domination table T from a table T
initialized to containing zero values is the following:

Initializing tables T and D

for x in P do
D[x]← n;
for y in P do

for z in O do
if (x, z) ∈ R and (y, z) /∈ R then

if T [x, y] = 0 then
D[x]← D[x]− 1;

T [x, y]← T [x, y] + 1;

In our example, tables T and D would be:

T a b c d e f g h
a 0 1 2 3 2 0 0 0
b 1 0 1 2 1 0 0 1
c 2 1 0 1 1 1 1 2
d 3 2 1 0 0 1 2 3
e 3 2 2 1 0 1 2 3
f 2 2 3 3 2 0 1 2
g 1 1 2 3 2 0 0 1
h 0 1 2 3 2 0 0 0

D:
a b c d e f g h
2 1 1 1 2 5 4 2
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4.2 Algorithmic use of the domination table

We will now modify Algorithm DF-CONCEPTS, using data structures T and
D described in the previous subsection, and used as global variables in order to
save space; this requires adding UPDATE primitives.

Algorithm INHERIT-CONCEPTS

input : Concept A×B, a subset Marked of P .
output : The not yet encountered descendants of A×B.
1. Compute the partition Part of P −A into maxmods ;
2. // Find the set ND of non-dominating maxmods of R(P −A, B).
for X ∈Part do

Choose x in X ;
if D[x] = |X | then

ND←ND + X ;

Compute the cover of A×B (if desirable);
3.
New ← ND from which any maxmod containing an element of Marked
has been removed;
for X in New do

A′ ← (A + X); B′ ← (B ∩R[X ]);
PRINT A′ ×B′;
PREUPDATE(A , X);
INHERIT-CONCEPTS(A′ ×B′, Marked );
POSTUPDATE(A , X);
Y ← union of all maxmods which dominate X ;
Marked←Marked∪X ∪ Y ;
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Procedure PREUPDATE

input : Intent A of concept A×B, a non dominating maxmod X of R(P−
A, B).

output : Tables T and D are modified using X and A.
Choose x in X ;
for y in (P −A)−X do

if T [y, x] = 0 then
D[y]← D[y]− |X |;

for j in B−R[x] do
Z ← (P−A)−R[j]−X ;
U ← (P −A)− Z −X ;
for (u, z) in U × Z do

T [u, z]← T [u, z]− 1;
if T [u, z] = 0 then

D[u]← D[u] + 1;

POSTUPDATE

input : Intent A of concept A × B, a non dominating maxmod X of
R(P−A, B).

output : Tables T and D are modified using X and A.
Choose x in X ;
for y in (P −A)−X do

if T [y, x] = 0 then
D[y]← D[y] + |X |;

for j in B −R[x] do
Z ← (P−A)−R[j]−X ;
U ← (P −A)− Z −X ;
for (u, z) in U × Z do

T [u, z]← T [u, z] + 1;
if T [u, z] = 1 then

D[u]← D[u]− 1;

The algorithm is initially called on the bottom element (U×O) by INHERIT-
CONCEPTS( (U ×O) , U ) on a Marked set initialized with U , where U cor-
responds to the columns of ones. Tables T and D are initialized from R as
described in the previous subsection.
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4.3 Complexity Analysis

We will first evaluate the worst-time complexity required by the main algorithm,
and then examine the time required by the updating process. In this analysis,
we consider that the size of a relation includes its property set and object set
(for example, |R| = |{(x, y) ∈ R}|+ |P +O|).
• Each step of Algorithm INHERIT-CONCEPTS requires computing the

maxmods of subrelation R(P −A, B), which can be done with Algorithm
MAXMOD-PARTITION in O(min(R(P − A, B), R(P − A, B) ) ). Using
table D, finding the set of non-dominating maxmods requires O(|P −A|)
time. Comparing these with Marked costs O(|P −A|), thus a concept is
processed in global O(min(R(P −A, B), R(P −A, B)) ) time.

• Tables T and D are pre-updated at each step to describe the domination
relationships in the new subrelation before a recursive call, and then post-
updated back to their original form. Clearly, the costs of the pre-updating
and post-updating processes are exactly the same.

We will now discuss the cost of the pre-updating process when moving
from concept A × B to its successor A′ × B′ = (A + X) × (B ∩ R[X ]),
obtained from non-dominating maxmod X of R(P −A, B).

We need to evaluate the number of unit decrementations on T at each
step. This corresponds to the number of object removals from lists in L.
Pre-updating means removing from L all objects i such that i fails to be
in the successor, i.e. such that i �∈ B′.

An object i will appear in the list L[x, y] iff (x, i) is in the relation and
(y, i) is not, which can be translated as: (x, i) ∈ R(P −A, B) and (y, i) �∈
R(P −A, B).

Since we are generating subrelation R(P − A′, B′), we do not need the
elements of A′; thus, the effort required is: |P −A′| . Σi∈(B−B′)|P−R[i]|.
However, there is an amortized complexity when moving up along a branch
of the spanning tree of the lattice induced by the algorithm: since table
L contains at most |P|.min(|R|, |R|) bits, in the worst case, when moving
all the way up from the bottom element to the top element of the lat-
tice, the table would be completely emptied, which would cost at most
O(|P|min(|R|, |R|)) time.

The global time complexity of the algorithm is thus bounded by O(min(R, R))
per generated concept, plus an updating cost of O(|P|min(|R|, |R|)) per tra-
versed maximal chain of the lattice, though this is very rough compared to the
complexity analysis detailed above.

We will end with the space complexity: the recursive stack contains at most
O(|P|) concepts of size O(|P +O|) each, Marked is of size O(|P|); T contains
O(|P|min(|R|, |R|)) bits.

The global space complexity is thus in O(|P|min(|R|, |R|)).
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Figure 2: Concept lattice L(R) of relation R. The concepts are numbered in
prefix order following our sample recursive execution described in Section 4; the
inherited sets of already processed vertices appear between brackets. The edges of
the Depth-First tree are labeled by the non-dominating maxmod used to compute
each new concept.

Example 4.3 Let us execute Algorithm INHERIT-CONCEPTS on relation R
of Example 2.1, associated with the concept lattice of Figure 2 which is labeled
according to the execution.
Step 1: The execution starts with the bottom element ∅ × 123456. In R =
R(P ,O), the non-dominating maxmods are {a, h}, {b}, {c} and {d}. The cover
of ∅ × 123456 is: ah × 236, b × 123, c × 125, d × 145. The set Marked of al-
ready processed properties is empty. ah×236 is chosen to be processed next. P−
{a, h} = {b, c, d, e, f, g}, the future subrelation will be R({b, c, d, e, f, g}, {2, 3, 6}).
The table is accordingly pre-updated: since objects 1, 4 and 5 disappear from
R, pairs from the Cartesian products {b, c, d, e}× {f, g}, {d, e}×{b, c, f, g} and
{c, d}×{b, e, f, g} should cause the corresponding numbers from T do be decre-
mented by 1, since R[1] = {f, g}, R[4] = {b, c, f, g} and R[5] = {b, e, f, g}.
New tables T and D obtained:

T b c d e f g
b 0 0 0 0 0 0
c 1 0 0 0 1 1
d 2 1 0 0 1 2
e 2 1 0 0 1 2
f 1 1 0 0 0 1
g 0 0 0 0 0 0

D:
b c d e f g
2 3 6 6 3 2

(for T [x, y], read column x and row y)
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Step 2: Concept ah × 236 is processed. Maxmods of R′: {b, g}, {c}, {d, e},
{f}; non-dominating maxmod: {b, g}. Concept abgh× 23 is generated.
Step 3: abgh × 23 is processed. Non-dominating maxmods: {c} and {f}.
Concepts abcgh × 2 and abfgh × 3 are generated; abfgh × 3 is chosen to be
processed next.
Step 4: abfgh×3 is processed. Non-dominating maxmod: {c, d, e}; top element
abcdefgh× ∅ is generated.
Step 5: abcdefgh× ∅ is processed; the subrelation obtained is empty; no new
concept can be generated.
Step 6: Step 3 recursively calls abcgh×2, with Marked={f}. Non-dominating
maxmod: {d, e, f}; since f is in Marked, no new concept is generated.
Step 7: Step 1 recursively calls c×125 with Marked={a, h}. Non-dominating
maxmods: {b} and {d}. Concepts bc× 12 and cd× 15 are generated. bc× 12 is
chosen to be processed next.
Step 8: bc×12 is processed, with Marked={a, h}. Non-dominating maxmods:
{d, e} and {a, g, h}; since a and h are in Marked, only {d, e} will be used to
generate a new concept: bcde× 1.
Step 9: bcde×1 is processed, with Marked={a, h}. Non-dominating maxmod:
{a, f, g, h}; since a and h are in Marked, no new concept is generated.
Step 10: Step 7 recursively calls cd × 15, with Marked={a, b, h}; {a, h} is
inherited from concept ah × 236, a ’brother’ of ’father’ c × 125, and {b} is
inherited from brother concept bc×12. Non-dominating maxmod: {b, e}. Since
b is in Marked, no new concept is generated.
Step 11: Step 1 recursively calls b×123 with Marked={a, c, h}. Non-domina-
ting maxmods: {a, g, h} and {c}. Since a, c and h are in Marked, no new
concept is generated.
Step 12: Step 1 recursively calls d × 145 with Marked={a, b, c, h}. Non-
dominating maxmods: {c} and {e}. Since c is in Marked, only concept de×14
is generated.
Step 13: de × 14 is processed, with Marked={a, b, c, h}. Non-dominating
maxmod: {b, c}. Since b and c are in Marked, no new concept is generated.
The recursive stack is empty and the algorithm terminates.

5 Conclusion

In this paper, we explain how to use Bordat’s approach to concept generation
without requiring a data strucure of exponential size.

Our complexity analysis involves traversed maximal chains of the lattice; we
believe that could be simplified and streamlined or even amortized. Moreover,
when the lattice is very large, the relation tends to have many ones, thus |R| is
of order n. In this case, we also run as fast as the algorithms which require expo-
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nential space, and, in practise, probably even faster, as we are not handicapped
by huge data structures.

Implementations remained to be pursued; comparisons of various modern
algorithms such as those done by [18] could integrate our new approaches. It is
also interesting to investigate on which classes of relations (sparse or dense for
example) our various versions would work better, especially using ’real’ data as
in [9].
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