
Very fast instances for concept generation

Anne Berry1, Ross M. McConnell2, Alain Sigayret1, and Jeremy P. Spinrad3

1 LIMOS (CNRS UMR 6158), Université Clermont-Ferrand II, Ensemble scientifique
des Cézeaux, 63177 Aubière Cedex, France. berry@isima.fr, sigayret@isima.fr

2 Computer Science Department, Colorado State University, Fort Collins, CO
80523-1873 USA. rmm@cs.colostate.edu

3 EECS Department, Vanderbilt University, Nashville, TN 37235 USA.
spin@vuse.vanderbilt.edu

Abstract. Computing the maximal bicliques of a bipartite graph is
equivalent to generating the concepts of the binary relation defined by
the matrix of this graph. We study this problem for special classes of in-
put relations for which concepts can be generated much more efficiently
than in the general case; in some special cases, we can even say that the
number of concepts is polynomially bounded, and all concepts can be
generated particularly quickly.

1 Introduction

One of the important current directions of research related to Formal Concept
Analysis deals with the generation of item sets, whether these are defined as
’frequent item sets’ or using other more complex criteria. These problems are
closely related to concept generation, which has given rise to recent publications
(see e.g. [1]).

The problem of concept generation has been shown to be equivalent to various
graph problems: computing the maximal transversals of a hypergraph or finding
the maximal bicliques of a bipartite graph ([17]). More recently, [4] showed that
concept generation is equivalent to generating the minimal separators of a co-
bipartite graph. On all three of these problems there exist publications which
may well yield algorithmic improvements for concept generation.

In this paper, we aim to use graph results which are related to the form of the
matrix representing the relation defined by a context. In some cases we require
the matrix to be input in a certain form, in other cases there are good graph
algorithms which re-order the rows and columns of the matrix so that the result
is in the desired form when the input relation permits it.

We address the issue of generating concepts more quickly than in the general
case on special binary matrices defined by a context (O,P ,R), with the require-
ment that only polynomial space is used to encounter all the concepts, whether
or not their number is polynomial. The best current complexity for the general
case of generating all concepts using only polynomial space is of O(|R|·|P|) per
concept using Ganter’s algorithm [9], or O(|P|α) per concept using the version
of Bordat’s algorithm introduced by Berry, Bordat and Sigayret which uses only

2

polynomial space [3], where nα is the time required to perform matrix multipli-
cation, currently α = 2.376 ([7]).

We start with the case in which the relation has the consecutive ones property:
the columns of the matrix representation can be permuted so that in every row,
the ones form a consecutive block (such a permutation is called a consecutive

ones arrangement). We show that in this case, the number of concepts is O(|R|),
and all these concepts can be found in global O(|R|) time. We generalize from
this starting point in several ways.

One form of generalization is to use the decomposition of a general matrix into
a PQR-tree ([13]), which efficiently finds submatrices which have the consecutive
ones property.

Other forms of generalization come from using natural extensions of the
consecutive ones property. Perhaps the most natural is the circular ones property.
Although the number of concepts can become exponential in this case, we show
that the concepts can be generated in O(|P|) time per concept, which is optimal,
since it takes Θ(|P|) space to represent a concept in this case. There also are fast
algorithms for permuting rows and columns to obtain a circular ones ordering,
if such an ordering exists.

Finally, we generalize to orderings in which the number of blocks of ones is at
most constant for every row. If we are given an ordering of this type, we can still
generate the set of concepts in O(|P|) time per concept, although no polynomial
algorithm is known for finding such an ordering when it is not given as part of
the input.

In these time analyses, as in all the rest of the discussions in this paper, P
and O can be freely interchanged by duality of rows and columns.

2 Background and previous results

In this paper, we consider contexts (O,P ,R), where O is the set of objects,
P is the set of properties, and both O and P are finite. We will work on the
0-1 matrix of R; we will refer to the elements of the relation as ones, and to
the non-elements as zeroes. We will use the following classical set notations: +
denotes the union of two disjoint sets, − denotes set difference.

A concept or closed set, also called a maximal rectangle of R, is a sub-product
A × B ⊆ R such that ∀x ∈ O − A, ∃y ∈ B | (x, y) 6∈ R, and ∀y ∈ P − B, ∃x ∈
A | (x, y) 6∈ R. Given a subset P1 of P and a subset O1 of O, we will say that
the set R∩ (O1 × P1) is a sub-relation of R which we will denote R(O1,P1).

We will also use finite undirected graphs. Such graphs are classically denoted
G = (V, E), where V is the vertex set and E is the edge set. A bipartite graph

is a graph G = (V1 + V2, E) where V1 and V2 induce edgeless subgraphs (i.e. V1

and V2 are independent sets). A maximal biclique (or maximal complete bipartite

subgraph) is a subgraph H = (W1 + W2, F), with W1 ⊆ V1, W2 ⊆ V2, such that
all edges are present between any vertex of W1 and any vertex of W2, and which
is maximal for this property. A graph G = (V, E) is said to be an interval graph

if there exists a one-to-one mapping I from V to a family of intervals of the

3

real line such that xy ∈ E iff the corresponding intervals I(x) and I(y) are
intersecting.

Example 1. O = {1, 2, 3, 4, 5, 6}, P = {a, b, c, d, e, f}. Relation R is presented
below.

R a b c d e f
1 × × × ×
2 × × ×
3 × × ×
4 × ×
5 × ×
6 ×

The maximal rectangles/maximal bicliques/concepts are:
O×∅, {2, 3, 6}×{a}, {1, 2, 3}×{b}, {1, 2, 5}×{c}, {1, 4, 5}×{d}, {2, 3}×{a, b},
{1, 2} × {b, c}, {1, 5} × {c, d}, {1, 4} × {d, e}, {3} × {a, b, f}, {2} × {a, b, c},
{1} × {b, c, d, e}, ∅ × P .
For example, {1, 2} × {b, c} is a maximal rectangle of the matrix given above,
or, equivalently, a maximal biclique of the graph of Figure 1.

1 3 4 5 62

a fedb c

Fig. 1. {1, 2} × {b, c} is a maximal biclique of graph G associated with relation R of
Example 1.

3 Consecutive Ones Matrices

The starting point for this research is the consecutive ones property. A matrix is
said to have the consecutive ones property if its columns can be permuted so that
in each row all the ones are consecutive. This property has been studied heavily
in the context of graph theory: Fulkerson and Gross ([8]) showed that a graph
is an interval graph iff the vertex-clique incidence matrix can be permuted to
have the consecutive ones property (the vertex-clique incidence matrix shows the
maximal cliques of the graph which each vertex belongs to). Booth and Lueker
([6]) gave a linear-time algorithm for finding a consecutive ones arrangement

4

of a given matrix if such an arrangement exists, as part of their interval graph
recognition algorithm.

Let us assume that we have a context (O,P ,R) whose 0-1 matrix has the
consecutive ones property. It takes O(|P|+ |O|+ |R|) time to find a consecutive
ones ordering of the columns ([14]). We claim that every concept of this relation
will have a column set that is consecutive in this ordering. Therefore, we can
associate with each concept a unique starting column, namely, the leftmost of
the concept’s columns in the ordering.

In this section we will use the common notations for 0-1 matrices; thus R will
denote a set of rows in a matrix, C will denote a set of columns. m will denote
the number of ones in the matrix.

Example 2. O = {1, 2, 3, 4, 5, 6, 7}, P = {a, b, c, d, e, f}. Matrix M, presented
below, has the consecutive ones property.

a b c d e f
1 × × ×
2 × × × ×
3 × × × × × ×
4 ×
5 × × ×
6 × × × ×
7 × ×

The corresponding concept lattice is presented in Figure 2.

We may delete rows and columns that are all zeros or all ones, compute the
lattice for the remaining submatrix, and then correct the elements of this lattice
in a trivial way. Henceforth, we will assume that the matrix has no rows that
are all zeros or all ones. This implies that the minimal element of the lattice is
O × ∅ and the maximal element is ∅ × P . We give a recursive algorithm that
finds the remaining concepts.

Let (c1, c2, ..., cp) be the order of the columns in a consecutive ones arrange-
ment. The input to each call is a submatrix of the initial matrix given by
{ci, ci+1, ..., cp}, the rows that have at least one 1 in any of these columns. In
addition, there is a mark on each row that has a 1 preceding column ci in the
original matrix. The purpose of the marks on the rows is to allow the recursive
call to avoid returning concepts of the submatrix that are not maximal in the
original matrix.

The algorithm finds all concepts of the original matrix that have i as their
starting column, and makes a recursive call on columns ci+1 through cp to find
the concepts that have their starting column anywhere in {ci+1, ci+2, ..., cp}.

Example 3. In Figure 3, the lefthand table corresponds to matrix M of Exam-
ple 2 passed to the initial call of the algorithm, with starting column a. The
initial matrix does not have any marked row. The next table shows the subma-
trix, M minus the first column, passed to the second call (starting column b). In

5

3 abcdef

23 abcd

123 abc

36 bcde

123456 b

12356 bc

2356 bcd

23567 d

367 de

1234567 0

Fig. 2. Concept lattice associated with the consecutive ones matrix of Example 2. The
set notations have been simplified for more clarity.

this second call, rows 1, 2 and 3 are marked as their starting column is a. The
third table corresponds to a submatrix with starting column c, all rows but 7
are marked. The fourth table corresponds to a submatrix with starting column
d; row 1 has disappeared as it has no one in columns d,e,f . There will be no
more recursive call.

Let the ending column of a row be the rightmost column where the row has
a 1. In the recursive call on columns {ci, ..., cp}, let Ri be the set of rows that
have a 1 in column i. We permute the rows so that the rows in Ri appear in
ascending order of ending column. When the rows of a set Ri are tied for ending
column, we place the marked ones before the unmarked ones.

Example 4. In Figure 3, R1 = {1, 2, 3}, as these objects have the same start-
ing column a, and these rows appear in ascending order of ending column (re-
spectively c, d, f). In the second call, on columns {b, c, d, e, f}, we will have
R2 = {4, 1, 2, 5, 6, 3}. The members of R2 appear in ascending order of ending
column, and the tie between rows 2 and 5 (ending column c) has been broken in
favor of 2, since row 2 is marked and row 5 is not.

Let (r1, r2, ..., rq) be the resulting ordering of Ri. The ones in row rj of the
submatrix extend from ci to ck for some k ≥ i. Because of the way Ri has been
ordered, every row after rj in the ordering also has ones in every column in
{ci, ..., ck}. Therefore, {rj , ..., rq}×{ci, ..., ck} is a rectangle. It is easy to see that
this rectangle is maximal in the submatrix, hence is a concept of the submatrix,
if and only if j = 1 or rj extends farther to the right than its predecessor, rj−1.

6

1 x x x

2 x x x x

3 x x x x x x

4 x

5 x x x

6 x x x x

4 x

1 x x

2 x x x

5 x x x

6 x x x x

3 x x x x x

1 x

2 x x

5 x x

6 x x x

3 x x x x

7 x x

7 x x 7 x x

2 x

5 x

6 x x

7 x x

3 x x x

a b c d e f b c d e f c d e f d e f

Fig. 3. Finding the concepts in the consecutive ones matrix of Example 3. The corre-
sponding lattice is presented in Figure 2.

A concept of the submatrix can fail to be a concept of the original matrix
if and only if it can be extended to a larger rectangle in the whole matrix by
adding column ci−1. This is easy to detect: a concept of the submatrix fails to
be a concept in the original matrix if and only if all of its rows are marked.

Example 5. In Figure 3, the initial call on rows (1, 2, 3, 4, 5, 6, 7) and starting
column a gives rise successively to concepts:
{1, 2, 3} × {a, b, c} (as 1 has ending column c, this concept can not be extented
to the right), {2, 3} × {a, b, c, d} (as 2 has ending column d and 1 has not, this
concept can not be upper extended), and {3} × {a, b, c, d, e, f}.
The second call on rows (4, 1, 2, 5, 6, 3) and starting column b generates:
{1, 2, 3, 4, 5, 6} × {b}, {1, 2, 3, 5, 6} × {b, c}, {2, 3, 5, 6} × {b, c, d}, and {3, 6} ×
{b, c, d, e}. As 3 is marked, row set {3} generates no new concept: {3} ×
{b, c, d, e, f} is a sub-rectangle of concept {3} × {a, b, c, d, e, f} obtained in the
initial step.
The third call, on starting column c, generates no concept, as all the rows are
marked.
The fourth call, on starting column d, generates {2, 3, 5, 6, 7}×{d}, and {3, 6, 7}×
{d, e}, as at least one object (7) is unmarked in row set {2, 3, 5, 6, 7} and in row
set {3, 6, 7}. {3} fails to contain an unmarked row and gives rise to no new con-
cept.
The corresponding lattice is presented in Figure 2. Concepts are generated in
this figure from left to right and from bottom to top.

Note that, in handling Ri, the algorithm never generates two concepts with
the same upper-left hand corner. This gives a one-to-one mapping from the
concepts the algorithm generates to the ones in the matrix, so that there can be
at most m of these concepts. The algorithm can only fail to generate directly
the top and bottom elements of the lattice, so we get the following bound:

Theorem 1. If a matrix with m ones has the consecutive ones property, then

the corresponding relation has at most m + 2 concepts.

That the bound is tight is illustrated by the identity matrix, where each 1 is
itself a concept, and O×∅ and ∅×P are also concepts. The number of concepts

7

can be Ω(m) in dense matrices, as it can be seen by running the algorithm on
an (n/2) × n matrix where row i has ones in columns i through i + n/2: half of
the ones are the upper-left corner of a concept.

The proof of correctness is elementary, given the foregoing observations. In or-
der to obtain an O(m) time bound, it suffices to spend time proportional to
(
∑p

i=1
Ri) ∈ O(m). This is also easy to accomplish by elementary techniques.

In particular, each concept can be represented by giving its column set as an
interval of (c1, ..., cp), and giving its row set as an interval on the ordering of Ri

computed in the recursive call on columns (ci, ..., cp).

4 Matrices with Bounded PQR Diameter

In this section, we will show that the number of concepts may be bounded by
the size of the corresponding relation, provided some property on the PQR-
decomposition of its matrix.

The PQ-tree of a consecutive ones matrix is a way of representing all consecu-
tive-ones orderings of the columns ([6]). It is a tree whose leaves are the columns
of the matrix. The tree has two kinds of internal nodes: Q-nodes, whose children
are ordered left-to-right, and P nodes, whose children are not ordered. Assigning
a left-to-right ordering to children of each P node and reversing the left-to-right
ordering of children of any subset of the Q nodes imposes a leaf order on the
leaves, hence an order on columns of the matrix. Such an ordering is always
a consecutive ones ordering. Conversely, all consecutive ones orderings can be
obtained in this way.

[13] provides a generalization of PQ-trees to arbitrary matrices, called the
PQR-tree, as illustrated in Figure 4. The third types of nodes, R nodes, appear if
and only if the matrix does not have the consecutive ones property, otherwise the
PQR-tree is a PQ-tree. The PQR-tree can be constructed in time proportional
to the number of ones of the matrix. One of the interesting aspects of PQR-trees
is that is gives a compact representation of all possible PQR arrangements of a
matrix.

The PQR-tree has a set-theoretic definition. Let us consider the leaves to
be a set V of ‘properties’, and let us consider each internal node to represent
a subset of V , namely the set of leaf descendants of the node. Such a subset
corresponds to a row (an ‘object’) of the matrix, more precisely to the property
set associated with this object. We say that two subsets X and Y of V overlap if
they intersect, but neither contains the other. Let F be the family of nonempty
subsets of V that do not overlap with any row, and let F0 be the set of members
of F that do not overlap with any other member of F : then F0 is the set of
nodes of the PQ-tree.

As a direct consequence of this definition, every row of a matrix is a union
of one or more children of the node of the PQR-tree, as a row that is not such
a union must overlap some member of F0, hence of F , a contradiction. To each
internal node of the PQR-tree, we may assign a quotient matrix, as follows.

8

Let ch(X) denote the children of X in the tree, let Row(X) denote the set
of rows that are given by the union of more than one member of ch(X), and
let Col(X) denote a set of columns with one representative column from each
member of ch(X). The quotient at X is the submatrix induced by rows Row(X)
and columns Col(X).

The exact choice of representatives from ch(X) to obtain Col(X) is irrelevant,
since all choices yield isomorphic submatrices. It is possible that Row(X) is
empty, but the family of sets given by {Row(X) 6= ∅ |X is an internal node} is
a partition of the rows.

Example 6. Figure 4 shows a PQR-decomposition of a matrix. Traditionally, the
Q nodes are drawn as horizontal bars, the P nodes are drawn as points, and R
nodes are drawn as filled ovals.

In this decomposition, the children of V = {a, b, c, d, e, f, g, h, i, j, k, l} are
W = {a, b, c, d, e}, {f} and Y = {g, h, i, j, k, l} (Q decomposition), rows 1 and
2 are the rows that are unions of more than one of these children, and these
rows, together with a selection of one column in each of W , {f} and Y , yield
the two-row quotient whose rows are (1, 1, 0) and (0, 1, 1).

8 1 1 1

W f Y

1

2

1 1

10

0

1

b

1 0 109

� � � �
� � � �
� � � �
� � � �

1 1 1 1 1

1 1 1 1 1

1 1

1 1

1

1 1 1 1

1 1 1 1

1

1

2
3

7

5

4

a b c d e f g h i j k l

1 1

1

1

1 1 1 1

6

9

W

X

Y

Z

V

a b c

d e

h i

g

f

j

k l

Quotients:

X d e
3 1 1 0

1104

a c

5 0 1 1 1

6 1

7 0 1

011

0 1

Zg k l h i

8 1 1

j

1

V (Q) W (P) X (Q)

Y (R) Z (P)

Fig. 4. The matrix of Example 6 and the corresponding PQR-tree and quotients.

9

Lemma 1. In a PQR-tree, a node is a P node if and only if its quotient matrix

is a rectangle of ones.

The matrix can be uniquely reconstructed from the quotients by inverting
this process. We now illustrate a similar operation by which the concepts of the
original matrix can be obtained from the concepts that occur in the quotients.
In Example 6, rows {5, 6} and columns {Z, k} are a concept in the quotient at
Y . Substituting {h, i, j} for Z in the column set, and adding rows labeled Y in
Y ’s parent V yields the concept with rows {2, 5, 6} and columns {h, i, j, k}.

In general, each concept A1 × B1 in the original matrix is obtained from a
concept A0 × B0 in a quotient at a node X , by expanding the sets that appear
as column labels in B0 and adding rows to A0 that have a 1 in a column labeled
with an ancestor of X in a quotient at an ancestor of X .

As in the case of consecutive ones matrices, we may use a compact represen-
tation of each concept found. From results shown in [13] we can derive that, on
the path from the quotient of A0 ×B0 to the root, at least every other quotient
has at least one 1 in every column. Each of these contributes at least one row to
A1. The length of the path to the root is O(|A1|), and the time to list out the
elements of A1 and B1, given A0 ×B0, is O(|A1|+ |B1|). Therefore, we may let
A0 × B0 serve to represent A1 × B1.

Definition 1. The decomposition diameter of a binary matrix M is the maxi-

mum number of children of an R node, or 1 if there are no R nodes.

The following is a consequence of the foregoing observations:

Theorem 2. If a matrix has a bounded decomposition diameter, the correspond-

ing relation R has O(|R|) concepts, and they can be found in O(|R|) time.

5 Circular Ones Property

Perhaps the more natural generalization of the consecutive ones property is the
circular ones property. When we first considered this generalization, we were
discouraged to find that the number of concepts becomes exponential, for exam-
ple, a matrix with only a diagonal of zeroes, which clearly has the circular ones
property, has a lattice isomorphic to that of the power set of P or O.

To generate concepts efficiently in this case, we will use the concept gener-
ation process described in [3]: the algorithm starts with the minimum element
of the lattice, and recursively processes the direct successors of each concept.
Since in a concept lattice, all the concepts containing a given property form a
sub-lattice, we can store in the recursive stack information necessary to avoid
re-processing a concept. Another useful feature is that each concept A × B,
(A ⊆ O, B ⊆ P) is the minimal element of a sub-lattice described by sub-relation
R(A,P − B). Finally, the direct successors of concept A × B are described by
the properties X which in R(A,P − B) are not properly contained in another;
the elements of X which have identical columns are then grouped together to

10

be added to A to form one of the successors of A × B. The bottleneck of this
algorithm is computing the containments; this requires O(|P|2 · |O|) in general.

However, we will show that the time for generating all concepts can be sig-
nificantly reduced if the matrix has a circular ones ordering.

First, we note that although PQ-trees are generally viewed as a tool for
finding a consecutive ones ordering, they can also be used to find a circular
ordering in O(|P|+ |O|+ |R|) time. Thus we may assume that we have a circular
arrangement of objects, and for each property, we are given the circular ordering
of its objects in concise form. For example, if there are 100 objects, the objects
of a property p1 may be given as o19 − o54, while those of p2 may be given
as o1 − o23 and o93 − o100. Given this form of storage, for each property pi,
it is easy to determine whether pi contains property pj in constant time. This
simple observation, together with the fact that an arrangement remains circular
as objects are deleted, is the key to reducing the time for concept generation
using polynomial space, from O(|P|2 · |O|) time per generated concept to O(|P|)
per generated concept.

6 Constant Number of Blocks

Our last extension of the consecutive ones property is to relations given as a
matrix in which the number of blocks of ones entries in every row is bounded by
a constant.

For each property, we maintain a concise representation of the ones in the
property; that is, for a property pi with ki blocks, the starting column number
and the ending column number of each block: j1 − j2, j3 − j4, ..., j2ki−1 − j2ki

.

As long as the number of blocks is constant, it is still possible to test con-
tainment between properties in constant time. It is also clear that properties
continue to have at most a fixed number of blocks of ones as objects are deleted
from the current universe of discourse. These observations allow us to gener-
ate the concepts in O(|P|) time per concept, using the same strategy as in the
circular ones case.

In one sense, going to a constant number k of consecutive blocks seems to be
a huge generalization of the previous algorithms: the consecutive ones property
corresponds to k = 1, while circular ones are a special case of k = 2. One
key advantage of the earlier cases discussed in this paper is the existence of
polynomial time algorithms to permute rows and columns of a matrix to obtain a
matrix with the consecutive/circular ones property, if such a permutation exists.
No such algorithm is known for k blocks of consecutive ones. An obvious open
question is to investigate whether this problem is polynomial or NP-complete.
However, in applications such as social science yes/no questionnaires ([2]), this
kind of arrangement may often arise naturally, for example when some questions
are logically related to others.

11

7 Conclusion

This paper shows that for a number of special classes of matrices, the matrix
properties can be used to design efficient algorithms for concept generation. In-
deed, even in the general case, if we use a recursive concept-generation algorithm
such as the one described in Section 5, we can afford to check on each sub-relation
encountered whether the matrix has the consecutive ones property, or the circu-
lar ones property, and in this case speed up the rest of the remaining recursive
call from O(|P|2 · |O|) time to O(|P| · |O|), O(|P| + |O|) or even constant time
per generated concept.

These results show that for special classes of input, the number of concepts
may be much less than exponential, notwithstanding the matrix density.

One of the questions which arises is how to embed a relation within one of
our special classes, while adding or removing a small or inclusion-minimal set of
ones.

There are many other classes of matrices and bipartite graphs to consider for
this problem. One example which springs to the mind is that of ‘Gamma-free
matrices’ which are obtainable if, and only if, the corresponding bipartite graph
is weakly chordal and bipartite (also called ‘chordal bipartite’). In this case, [11]
showed that all the maximal bicliques can be identified in min(|R| · log(|O| +
|P|), (|O| + |P|)2) time. Other results may later appear using this relationship
between graphs and lattices.

References

1. Alexe G., Alexe S., Crama Y., Foldes S., Hammer P.L., Simeone B.: Consensus al-
gorithm for the generation of all maximal bicliques. Discrete Applied Mathematics,
145 (2004), 11–21.

2. Barbut M., Monjardet B.: Ordre et classification. Classiques Hachette, (1970).
3. Berry A., Bordat J-P., Sigayret A.: Concepts can’t afford to stammer. INRIA Proc.

International Conference ”Journées de l’Informatique Messine” (JIM’03), Metz
(France), (Sept. 2003). Submitted as ’A local approach to concept generation.’

4. Berry A., Sigayret A.: Representing a concept lattice by a graph. Discrete Applied
Mathematics, 144(1-2) (2004) 27–42.

5. Bordat J-P.: Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques, Informatique et Sciences Humaines, 96 (1986) 31–47.

6. Booth S., Lueker S.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13 (1976)
335–379.

7. Coppersmith D., Winograd S.: On the Asymptotic Complexity of Matrix Multi-
plication. SIAM J. Comput., 11:3 (1982) 472–492.

8. Fulkerson D.R., Gross O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15 (1965) 835–855.

9. Ganter B.: Two basic algorithms in concept analysis. Preprint 831, Technische
Hochschule Darmstadt, (1984).

10. Ganter B., Wille R.: Formal Concept Analysis. Springer, (1999).
11. Kloks T., Kratsch D.: Computing a perfect edge without vertex elimination order-

ing of a chordal bipartite graph. Information Processing Letter 55 (1995) 11–16.

12

12. Kuznetsov S. O., Obiedkov S. A.: Comparing performance of algorithms for gen-
erating concept lattices. Journal for Experimental and Theoretical Artificial Intel-
ligence (JETAI), 14:2-3 (2002) 189–216.

13. McConnell R. M.: A certifying algorithm for the consecutive ones property.
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA04), 15, (2004) 761–770.

14. Paige R., Tarjan R. E.: Three Partition Refinement Algorithms. SIAM Journal on
Computing, 16 (1987) 973–989.

15. Spinrad J. P.: Efficient Graph Representation. Fields Institue Monographs; 19.
American Mathematical Society, Providence (RI, USA), (2003).

16. Spinrad J. P.: Doubly Lexical Orderings of Dense 0-1 Matrices. Information
Processing Letters, 45 (1993) 229–235.

17. Zaki M. J., Parthasarathy S., Ogihara M., Li W.: New Algorithms for Fast Dis-
covery of Association Rules. Proceedings of 3rd Int. Conf. on Database Systems for
Advanced Applications, (April 1997).

