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Abstract. We improve the current complexities for maintaining a
chordal graph by starting with an empty graph and repeatedly adding
or deleting edges.

1 Introduction

Our motivation for this paper stems from the biology-based problem of improving
the matrix representing an evolutionary tree (phylogeny) which contains errors.
To solve this, Berry, Sigayret and Sinoquet in [2] needed to start with an inde-
pendent set and repeatedly add an edge of minimum weight, while maintaining
a chordal graph. However, the most efficient algorithms for dynamically main-
taining a chordal graph (see Ibarra [8]) were insufficient to ensure a complexity
which could be used in practice.

In this paper, we improve the time complexity for dynamic algorithms for
chordal graphs. Ibarra studied the problem of maintaining a chordal graph as
edges are inserted or deleted. Operations considered were insert, delete, insert
query and delete query; the last two operations ask whether deletion/addition
of a given edge xy preserves chordality. He gave three implementations of the
algorithm. In the first implementation, all operations take O(n) time. In the
second, deletions take O(n log n) time, deletion queries and insertion run in
O(n) time, while insertion queries run in O(log2 n) time. The third variant was
designed for sparse chordal graphs and will not be addressed in this paper.

Our new running times are O(n) for insertion and deletion, O(1) for insertion
queries, and O(n) for deletion queries. All data structures used are simple. We do
make one extra assumption, which is notmade in the Ibarra paper. We assume that
we start with an empty graph; if this assumption is not made, there is an initial
start-up cost of O(m∆), where ∆ is the maximum degree of a vertex, or O(nα),
where nα is the cost of doing matrix multiplication. We use this result to improve
the time bound for the original phylogeny problem, from O(n4) to O(n3).

2 Preliminaries

In this paper, G = (V, E) will be a graph with n vertices and m edges. We will
use non-formal notations such as G−S instead of G(V −S). An xy-separator in
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a connected graph G is a non-empty set S of vertices such that there is no path
from x to y in G−S. S is a minimal xy-separator if S does not properly contain
any xy-separator. Whenever there exists a pair {x, y} of vertices such that S is
a minimal xy-separator, S is called a minimal separator.

A graph is chordal if every cycle of length greater than three has a chord.
Chordal graphs have a long history of study; see, for example [1,6]. A clique tree
of a chordal graph G is a tree T such that nodes have a 1-1 correspondence with
maximal cliques of G, edges correspond to non empty intersections of pairs of
maximal cliques, and for all vertices v in G, the set of maximal cliques which
contain v induces a subtree of T . A graph is chordal iff it has a clique tree ([5],
[3], [12]). Each edge S = K1 ∩ K2 of T corresponds to one minimal separator S
of G; conversely, each minimal separator of G is represented by at least one edge
of T . A chordal graph may thus have several clique trees. A clique tree has O(n)
nodes. There are known algorithms (see for example [10]) which find a clique
tree of a chordal graph in O(m + n) time.

The discussions in this paper will use the following theorems which are easy
to prove using well-known results on chordal graphs and a characterization
from [2]:

Characterization 1. ([2]) Let G = (V, E) be a chordal graph, xy �∈ E. Then
G + xy is chordal iff {x, y} is a 2-pair of G (i.e. all chordless paths between x
and y are of length 2).

Theorem 2. Edge xy can be deleted from a chordal graph G without causing a
chordless cycle iff x and y are not together in any minimal separator of G.

Theorem 3. Edge xy can be added to a connected chordal graph G without
causing a chordless cycle iff x and y are both adjacent to every vertex in some
minimal xy-separator S. Furthermore S = N(x) ∩ N(y).

Theorem 4. The number of maximal cliques containing a vertex x in a chordal
graph is at most |N(x)|. The total number of vertices in all maximal cliques of
a clique tree is O(m).

3 Data Structures

We maintain a clique tree of the current chordal graph G with the following
modifications. For each maximal clique K and minimal separator S in the clique
tree, and each vertex x, we keep variables neighnum(x, K) and neighnum(x, S)
denoting the number of neighbors of x in K and S respectively.

We also maintain an array Insertable; Insertable(x, y) = 1 iff xy can be
inserted while maintaining chordality.

We will discuss how to calculate initial values if we are given a start graph
G after Theorem 7. If we start with an edgeless graph, all values are initially 0.
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4 Algorithms

We now discuss how to implement the various operations. Some of these opera-
tions are identical to those in [8], but are repeated here so that the reader can
have easy access to the full algorithm.

The simplest primitive, given our data structures, is Insert Query. We
look up in our array Insertable whether Insertable(x, y) = 1. The other simple
primitive to describe is Delete Query; to achieve an O(n) bound, step through
the tree and test whether more than one maximal clique contains both x and
y. If it is desired, this can be reduced to O(min{degree(x), degree(y)}) by using
Theorem 4 and letting each vertex x keep a list pointing to each clique which
contains x.

Operations Insert and Delete are very similar to each other. In each case,
we modify the clique tree and then update the array Insertable to decide which
edges may now be added to the graph while preserving chordality.

We first deal with the insertion of xy.
The first part of the modification, finding a clique tree for G+xy, may work

exactly as in Ibarra’s paper, though we must make sure to update our new data
structures as well. For completeness, we will give the full process here.

Let xy be the edge to be inserted. There will be exactly one new maximal
clique, which is y + x + (N(x) ∩ N(y)). At most 2 maximal cliques of G are
deleted, which are x + (N(x) ∩N(y)) and y + (N(x)∩N(y)) if these cliques are
currently maximal in G. For simplicity, we will treat the cases of 2, 1 or 0 of
x + (N(x) ∩ N(y)), y + (N(x) ∩ N(y)) existing in the clique tree separately. To
determine whether one or both of these cliques are in the current tree, let K1

be any maximal clique containing x and K2 be any maximal clique containing
y. We find the path from K1 to K2 in the clique tree. Let Kx be the last clique
on this path which contains x, and let Ky be the first clique on the path which
contains y. It is not hard to see that if x + (N(x) ∩ N(y)) is in the tree, then
it must be Kx and if y + (N(x) ∩ N(y)) is in the tree, it must be Ky. Thus, we
can determine which cliques appear and disappear with the addition of edge xy
in O(n) time.

– Case 1. both x+N(x)∩N(y) and y+N(x)∩N(y) are maximal cliques of G.
There is a separator Sxy on the path from Kx=x+ N(x)∩N(y) to Ky=y +
N(x) ∩ N(y) which is exactly equal to N(x) ∩ N(y), else xy could not have
been inserted while maintaining chordality. We delete this edge and unify
the two nodes representing Kx and Ky into node Kxy=x+y+(N(x)∩N(y))
as in Figure 1.

– Case 2. we now consider the case in which one of the two possible maximal
cliques ceases to be maximal due to the addition of xy; w.l.o.g., let us assume
that Kx = x + (N(x) ∩ N(y)) is a maximal clique of G.

Let Ky be the first clique containing y on the path from K1 to K2; as
noted earlier, Kx = x+(N(x)∩N(y)) will be the last clique containing x on
this path. We add an edge from the Kx to Ky, and delete edge N(x)∩N(y)
on the path from x to y. We then add y to Kx as in Figure 2.
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Fig. 1. Insert — case 1

Ah

A1

N(x)    N(y)+x Ky

Ah+1

Ak

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

N(x)    N(y)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

A1

Ah

N(x)    N(y)+x Ky

Ah+1

Ak

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 2. Insert — case 2
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Fig. 3. Insert — case 3

– Case 3. in this case, we add a new node to the clique tree corresponding to
x + y + (N(x) ∩ N(y)), and add edges from this node to Kx and Ky, and
delete Sxy as in Figure 3.

We need to update the variables neighnum(v, K) and neighnum(v, S) for
each maximal clique K and minimal separator S of the tree to reflect the changes
caused by insertion of xy. For each clique K and separator S containing y, add
1 to neighnum(x, K) and neighnum(x, S); similarly, increment the values of
neighnum(y, K) and neighnum(y, S) for each clique or separator containing y.
We have at most one new maximal clique Kxy in the tree: x+y+(N(x)∩N(y));
for each vertex v, we let neighnum(v, Kxy) = neighnum(v, Sxy) plus the number
of neighbors of v in {x, y}.

We now have to update the values for separators which were changed by the
insertion of xy. Note that in case 1, no separators change, in case 2 a single
separator (which goes between Kx and Ky) has a vertex added to it, and in case
3 two separators are added corresponding to the edges around the new node of
the clique tree.
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The only separators changed are those adjacent to the new maximal clique
x+y+(N(x)∩N(y)), and correspond to N(x)∩N(y) plus possibly a vertex from
{x, y}. Since we know the number of neighbors of each vertex w.r.t. N(x)∩N(y),
it is easy to calculate the number of neighbors of each vertex w.r.t. to the new
separators in constant time.

The array Insertable must be updated after addition of edge xy. We will
defer discussion of this step until after we discuss deletion of an edge, since both
steps make use of a routine which takes an input vertex x and a clique tree, and
finds all z such that xz is insertable in O(n) time.

We will now examine deletion.
The deletion of an edge xy causes the maximal clique x + y + (N(x)∩N(y))

to disappear from the clique tree. At most two new maximal cliques may appear:
x+(N(x)∩N(y)) and y +(N(x)∩N(y)). As in the case of insertion, we discuss
the cases of 0, 1 or 2 maximal cliques appearing separately. As observed by Ibarra
[8], it is easy to determine whether each of these cliques appears in O(n) time.
We find the single maximal clique containing x and y, and look for edges from
this node which correspond to separators containing 1 + |N(x)∩N(y)| vertices;
we then test whether x or y is the vertex missing in such a separator.

– Case 1. Two maximal cliques appear: x+(N(x)∩N(y)) and y+(N(x)∩N(y)).
In this case, the tree node corresponding to x+y+(N(x)∩N(y)) is split into
2 adjacent nodes x+(N(x)∩N(y)) and y +(N(x)∩N(y)). The neighboring
cliques Y∗ containing y are made neighbors of y + (N(x) ∩ N(y)), other
cliques which were neighbors of x + y + (N(x) ∩ N(y)) become neighbors of
x + (N(x) ∩ N(y)) in the new tree, as in Figure 4.

– Case 2. If one maximal clique, which we will w.l.o.g. assume is x + (N(x) ∩
N(y)) appears, the following changes are made.

Let Ky be the neighbor of x+y+(N(x)∩N(y)) which is separated by an
edge separator with 1 + |N(x)∩N(y)| vertices. We remove y from the node
x + y + (N(x) ∩ N(y)) and for every neighbor Y∗ of x + y + (N(x) ∩ N(y))
containing y in the clique tree except for Ky, we remove the connection from
Y∗ to x + y + (N(x) ∩ N(y)) and add an edge from Y∗ to Ky, as in Figure
5. Note that since none of these Y∗ correspond to cliques containing x, the
separator between Y∗ and Ky is the same as the old separator between Ky

and x + y + (N(x) ∩ N(y)).
– Case 3. In the remaining case, no new maximal clique appears; we remove

x+y+(N(x)∩N(y)) from the clique tree, then we find Ky and an analogous
Kx as in the previous case; these are cliques which contain y + N(x)∩N(y)
and x + N(x)∩N(y) respectively. We add an edge between Kx and Ky. All
former neighbors of x + y + (N(x) ∩ N(y)) containing y are given edges to
Ky, while other neighbors are given edges to Kx, as in Figure 6. Since no
remaining clique contains both x and y, the separators remain the same in
the new clique tree, except for the edge separating Kx and Ky.

We now describe how to modify the variables maintained after the modification
of the clique tree.
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The only new maximal cliques to appear are either x + (N(x) ∩ N(y)) or
y + (N(x) ∩ N(y)). Since we know the number of neighbors in each vertex in
x + y + (N(x) ∩ N(y)), it is easy to compute the number of neighbors in the
new clique in constant time per vertex. The only new separator which could
have been created was N(x)∩N(y). Again, it is easy to compute the number of
neighbors of each vertex w.r.t. the new separator N(x) ∩ N(y), since we know
the number of its neighbors in x + y + N(x) ∩ N(y).

We now come to the updating of the array Insertable after deletion or addition
of the edge xy:

Theorem 5. Let G be a connected chordal graph. Let x, y, v and w be vertices
such that neither v nor w is equal to x or y.

1. If G+xy is chordal: vw can be inserted into G+xy while preserving chordality
iff vw could be added to G while preserving chordality.
2. If G−xy is chordal: vw can be inserted into G−xy while preserving chordality
iff vw could be added to G while preserving chordality.

Proof.

1. xy is not an edge of G. G and G + xy are chordal.
=⇒ (G+xy)+vw is chordal. Suppose G + vw is not chordal: there exists a

chordless cycle C = v ∼ w ∼ v. In G + xy + vw, which is chordal, C
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does not remain chordless and this must be due to chord xy. Then x and
y are in C which is w.l.o.g. v−s−w∼x∼y∼v. As a consequence, cycle
v−s−w∼x−y ∼ v is chordless in G + xy + vw — a contradiction.

⇐= G+vw is chordal. By Theorem 3 there exists a minimal vw-separator
S = N(v)∩N(w). The addition of edge xy does not change the common
neighborhood of v and w; then there exists in G + xy a minimal vw-
separator S′ ⊇ S. Suppose S′ �= S; then there exists a new path between
v and w; this path must use edge xy, and is w.l.o.g. v∼x−y∼w. As
there is also a path v−s−w for some s ∈ S, chordal graph G + xy
contains a chordless cycle of length ≥ 4 — a contradiction. Then S′ =
S = N(v) ∩ N(w) remains a minimal vw-separator in G + xy and, by
Theorem 3, vw is insertable in G + xy.

2. Apply part 1 of this theorem with G′ = G + xy and thus G = G′ − xy. �

Given the above theorem, we only need to find which vertex pairs {x, z}
and {y, z} can be inserted to preserve chordality, and update these values in the
array Insertable.

We give an algorithm which takes an arbitrary single vertex v and finds all
non-neighbors w of v such that vw can be inserted and preserve chordality in
O(n) time given the information maintained on the clique tree. By Theorem 5,
we can simply run this for x and y when xy is inserted or deleted, and we will
have updated our Insertable list correctly.

Theorem 6. Given a vertex v, we can find all vertices w such that vw can be
inserted while preserving chordality in O(n) time.

Proof. The following algorithm takes a vertex v and finds all w such that adding
vw to G will preserve chordality.

For each non-neighbor w of v, place w on the clique tree at any clique which
contains w. We select any clique containing v, and traverse the clique tree in a
depth-first fashion. When a non-neighbor w is reached on the clique tree, we will
decide whether adding vw to the tree would preserve chordality.

We keep one extra data structure during our traversal. Recall that vw can be
added iff w and v are both completely adjacent to some minimal vw-separator.
The extra structure is an array posssep of size n, which holds pointers to possible
separators S such that S might be a minimal vw-separator meeting the criteria
of Theorem 2 for some w we may encounter on the path. Initially, posssep is
empty.

Suppose that we are at clique node K in our traversal of T , and our DFS
traversal of T leaves K by an edge corresponding to separator S to a new node
K ′ of T .

We test using neighnum(v, S) whether v is adjacent to all vertices of S. If
neighnum(v, S) = |S|, then S could be a possible vw-separator meeting the
conditions of Theorem 2. We look at position |S| of posseps. If this is already
non-empty, then there is already a separator S′ with the same vertices as S
encountered earlier than S on the path from x. In this case, if S meets the
conditions of Theorem 2, S′ also meets the conditions of Theorem 2 for any w
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encountered on the path, and S is not stored in posseps. If position |S| is empty,
we mark this edge e as a candidate separator, and put a pointer in posseps(|S|)
to edge e. We add 1 to a count of the number of separators in posseps, and if
this number of separators in posseps becomes 1, we call this separator startsep.

Suppose that we encounter a vertex w which was placed on the clique tree.
We want to test whether v and w are separated by any vw-separator S such that
both v and w are completely adjacent to S.

It is not hard to see that all minimal vw-separators are on the path from v
to the current node, though (since w may be in many cliques on this path) not
all edges on the path correspond to minimal vw-separators. We test how many
neighbors of w there are in separator startsep; call this number vwneighbors.
Clearly, any separator with fewer than vwneighbors vertices cannot separate v
from w. In addition, any separator with more than vwneighbors vertices cannot
be completely adjacent to w, since neighbors of v can only disappear as we
traverse the path from v to w. Thus, we only need to check if the edge pointed
to by posseps(vwneighbors) is a minimal vw-separator satisfying the conditions
of Theorem 2. If the array points to edge Ki − S − Kj , with Ki closer to v,
we check that w is not in Ki (or this would not be a vw-separator), and that
neighnum(w, S) = |S|.

We make Insertable(v, w) = 1 if these conditions hold, and 0 otherwise.
As we back up across an edge e = Ki − S −Kj in the DFS, if e is marked as

a separator, we delete the pointer in posseps(|S|), and decrement the number of
current possible separators. �

Combining the theorems above, we get the desired result.

Theorem 7. The algorithm maintains a chordal graph under the operations
insert, delete, delete query, and insert query, taking O(n) time for the first three
operations and O(1) time for insert query.

If a connected graph G is given as input, it is necessary to construct a clique
tree, and compute neighnum(v, S) and neighnumN(v, K) for each vertex v,
each minimal separator S, and each clique K of the clique tree.

As a clique tree of a chordal graph can be found in O(m+n) time and has an
O(m) overall number of vertices in the nodes, we can step through all maximal
cliques K, and for each v in K add 1 to neighnum(w, K) for all neighbors w of
v, thus finding all these variables in O(m n) time.

Although there are also O(m) vertices over all minimal separators of the
clique tree (so the argument above could also be used to count all variables in
O(mn) time), the algorithms for finding a clique tree of a chordal graph usually
do not explicitly label the separators. Therefore, we describe briefly how these
separators could be labeled in O(m + n) time. Choose an arbitrary root for the
clique tree. For each node K of the clique tree, perform the following operation.
Mark all positions of an array which are vertices of K. For each child K ′ of K,
step through all vertices of K ′, putting them on the separator between K and
K ′ if these are marked in the array. Since vertices of each maximal clique K are
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traversed at most twice (once when K is a parent, and once when K is a child),
the total time spent constructing separators is O(m + n).

Thus, all initial variables can be computed in O(mn) time. Alternatively, we
can use matrix multiplication to get the variables. Construct a graph G′ with a
vertex for each minimal separator S, a vertex for each maximal clique K, and
two copies v1 and v2 of each vertex v of the graph. Add an edge from v1 to w2 if
and only if v and w are adjacent in G, and an edge from v2 to K or S if and only
if v is in this maximal clique or minimal separator. The number of neighbors of v
in K (or S) in G is the number of paths of length two from v1 to K (or S) in G′.
It is well known that the number of paths of length two from i to j is equal to
M2[i, j], where M is the adjacency matrix of the graph. Since G′ has O(n) ver-
tices, all variables can be constructed in O(nα) time, where α is the coefficient of
n in a matrix multiplication algorithm. The best known bound for α is 2.376 [4],
and the variables can be computed in this time bound if one is willing to allow
the (complex) algorithms used for matrix multiplication in that paper.

Recall that our algorithm assumes that our initial graph is edgeless. We thus need
to deal with a chordal graph which is not connected. We begin with a forest of
elementary clique trees. While the graph is not connected, the insertability of
xy is determined by first testing whether x and y are in the same connected
component of G. If not, xy is insertable, and the corresponding cliques trees will
be merged (process similar to Case 1 of insertion, but without initial edge N(x)∩
N(y)); clearly, the only changes we have then to perform on array Insertable
are w.l.o.g. Insertable(x, z) = 1 for each neighbor z of y. For operation Delete,
when the graph is disconnected by an edge deletion, its clique tree is split (by
deleting edge Kx−Ky in Case 1 or 3 of deletion) and the child trees are managed
separately.

5 Phylogeny

We now discuss the problem of efficient construction of a chordal graph by re-
peatedly adding a minimum weight edge xy to a current chordal graph G such
that G + xy is chordal. The fastest known algorithm for this problem runs in
O(n4) time ([2]); we will reduce the time complexity to O(n3). The previous
algorithm relied on Characterization 1 and used the algorithm ([11]) for main-
taining all 2-pairs in a general graph as edges are added in O(n4) overall time. In
this paper, we show that new 2-pairs can be found more efficiently if the graph
is known to be chordal.

The problem discussed in this section arose in the context of computational
biology. The problem, called phylogeny, involves reconstructing an evolutionary
tree, given genetic information of modern species. A correspondence between the
phylogeny problem and chordal graphs was first noted in [7].

To summarize very briefly the work most relevant to this paper, one can
construct a matrix computing phylogenetic dissimilarity between different pairs
of species. If we assume that this matrix is an ‘additive tree distance’ (which
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corresponds to the notion that if species A branches off from B and C, and
then later B branches off from C, the phylogenetic difference between A and
C is equal to the difference between A and B plus the difference between B
and C), then the graph Gi formed by including all edges with difference less
than each threshold i will be a chordal graph ([7]). In practice, [7] found that
the data tends to give graphs which are not chordal, but are ”almost” chordal.
We want to take this data, and modify it as little as possible to get a chordal
graph. [2] proposes an edge addition scheme, starting from an edgeless graph,
and repeatedly adding the smallest weight edge which preserves chordality, as
an effective way of processing the phylogenetic data.

In that paper, an O(n4) algorithm was given to solve the problem. We use
the results of the previous section to reduce the time complexity to O(n3). Recall
from Theorem 5 that when an edge xy which maintains chordality is added, the
only pairs which can change status as far as eligibility for addition are pairs
containing x or y.

Therefore, we can maintain a list of edges eligible for addition to the struc-
ture, and there will be at most n3 modifications of the list throughout the run-
ning of the algorithm. If the list of eligible edges is stored in increasing order of
weight, we will simply choose the first eligible edge for addition at any step, and
use the algorithm of the previous section to determine which changes to make
in the list in O(n) time.

If the list is stored as a balanced tree, additions and deletions can be made
in O(log n) time, leading to an O(n3 log n) algorithm for finding the order in
which edges will be added. We will show how to accomplish the same task in
O(n3) time.

Theorem 8. We can find the complete sequence in which we will add minimum
weight edges which preserve chordality in O(n3) time.

Proof. As a first step, we sort all possible pairs by weight, and label each pair
xy with the position of xy in the sorted list. At each step, we want to find the
eligible pair with smallest label to add to our graph.

Instead of keeping the entire list of eligible pairs sorted, we group the eligible
pairs as follows. We maintain unordered lists Li of eligible pairs with thresholds
i n + 1 through (i + 1)n for each i from 0 to n− 1; i.e., we keep a list of eligible
edges with thresholds in the ranges [1..n], [n + 1..2n], ... [n(n− 1)+ 1..n2]. Each
eligible pair xy has a pointer to the position of xy in the appropriate list.

To choose the next eligible edge for addition, step through the lists until we
find some non-empty list. Since there are O(n) lists, we can find the next eligible
pair in O(n) time. Once the appropriate list is found, examine all pairs in the
list to find the smallest eligible pair. Since each list contains at most n elements,
the total time to find the next eligible pair is O(n).

Using the algorithm of the previous section, we can find all pairs which must
be added and deleted from the list of eligible edges in O(n) time. Since each
modification clearly takes constant time using our data structures, the total
time for adding an edge is O(n).
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Since there are O(n2) edges added, the total time taken to find the sequence
of edge additions is O(n3). �

6 Conclusion

This paper shows that if we start with an edgeless graph, we can maintain
chordality as edges are added and deleted using O(n) time for insertions, dele-
tions, and delete queries, and constant time for insert queries. As an application,
we show that a triangulation problem arising out of phylogeny can be solved in
O(n3) time.
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5. Gàvril F.: The intersection graphs of subtrees of trees are exactly the chordal
graphs. Journal of Combinatorial Theory B, 16 (1974) 47–56.

6. Golumbic M. C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, (1980).

7. Huson D., Nettles S., T. Warnow T.: Obtaining highly accurate topology esti-
mates of evolutionary trees from very short sequences. Proc. RECOMB’99, Lyon
(France), (1999) 198–207.

8. Ibarra L.: Fully Dynamic Algorithms for Chordal and Split Graphs. Proc. 10th
Annual ACM-SIAM Synposium on Discrete Algorithms (SODA’99), (1999) 923–
924.

9. Kearney P., Hayward R., Meijer H.: Inferring evolutionary trees from ordinal data.
Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97),
(1997) 418–426.

10. Spinrad J. P.: Efficient Graph Representation. Fields Institute Monographs 19.
American Mathematics Society, Providence (RI, USA), (2003) 324p.

11. Spinrad J., Sritharan R.: Algorithms for Weakly Triangulated Graphs. Discrete
Applied Mathematics, 59 (1995) 181-191.

12. Walter J. R.: Representations of Rigid Circuit Graphs. PhD. Dissertation, Wayne
State University, Detroit (USA), (1972).


	Introduction
	Preliminaries
	Data Structures
	Algorithms
	Phylogeny
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




