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Abstract In order to help infer an evolutionary tree (phy-
logeny) from experimental data, we propose a new method
for pre-processing the corresponding dissimilarity matrix,
which is related to the property that the distance matrix of a
phylogeny (called an additive matrix) describes a sandwich
family of chordal graphs. As experimental data often yield
distance values which are known to be under-estimated, we
address the issue of correcting the data by increasing the
distances which are incorrect. This is done by computing,
for each graph of the sandwich family, a maximal chordal
subgraph.

1 Introduction

Inferring evolutionary trees (also called phylogenies) from
dissimilarity data remains one of the major challenges in
the field of computational biology. Problems like multiple
sequence alignment, gene function prediction and protein
structure prediction involve phylogenetic reconstruction.

Dissimilarity matrices are obtained experimentally by
considering a set of ‘objects’, which in a phylogenetic con-
text are taxa, (but which can, for other biological problems,
be genes or proteins for example), and by measuring, using
some feasible criterion, the distance between the elements
of each pair of taxa. Data are thus described as positive-val-
ued symmetric matrices; when this matrix does indeed cor-
respond to a phylogeny (it is then called an additive matrix),
reconstructing the tree is easy, and can be done in polynomial
time, yielding a unique tree topology [2,13,23].

A. Berry (B) ·A. Sigayret
LIMOS (Laboratoire d’Informatique de Modélisation et d’Optimisation
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Experimental results, however, are not exactly additive
matrices, and the phylogeny has to be inferred from real data.
Many methods have been proposed for this (see e.g. [9,13,
24,26]), but they remain costly and inaccurate, so that new
approaches are still being sought.

One of the recent trends in this field of research is to
examine the ordinal properties of the matrix. Dissimilarity
matrices describe a succession of thresholds, and it turns out
to be interesting to examine the structure of these thresh-
olds, rather than only the values themselves (see [21,24,26]),
partly because they seem to be less sensitive to small data
variations (see [11]), but also because biologists are more
concerned with reconstructing the structure (topology) of the
phylogenies than by finding the exact valuations of the edges
of the phylogeny, so that it seems promising to look for struc-
tural properties.

Our approach here is to consider the family of undirected
graphs defined by the dissimilarity matrix, each graph of the
family corresponding to one of the thresholds of the matrix;
we call this the threshold family of graphs defined by a dis-
similarity matrix.

Huson, Nettles and Warnow in [24] use the property that
if the matrix is additive, all the graphs of the threshold fam-
ily are chordal (or triangulated), and give experimental evi-
dence that the graphs obtained in real-world data are “almost
triangulated”.

As a means of pre-processing the experimental data, our
aim here is to correct each graph of this threshold family so
that it will indeed be chordal, a process called triangulation.

The most classical way of correcting a non-chordal graph
is called minimal triangulation. It is well studied ([3,4,6,7,
27]) and consists in adding an inclusion-minimal set of edges
to the graph in order to make it chordal. For a given graph
with n vertices and m edges, computing such a minimal tri-
angulation can be done in O(nm) time.

Adding edges to a graph of a threshold family means
lowering the thresholds of the corresponding edges. Biolo-
gists, however, estimate that in the context of constructing a
phylogeny from DNA sequences, the thresholds obtained by
experimentations tend to be rather too low than too high, the
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argument being that the number of mutations, represented by
the distance between taxa, is in fact higher than what can be
observed experimentally (see [26]).

We have thus examined the problem of correcting a graph
which fails to be chordal by removing edges rather than add-
ing them, thereby computing a maximal chordal subgraph or
maximal subtriangulation of each of the graphs of the thresh-
old family. The maximal subtriangulation problem has been
somewhat less studied than minimal triangulation [1,15–17,
30], but there exist several algorithms [1,16,30] which com-
pute a maximal subtriangulation in O(�m) time, where � is
the maximum degree in the graph.

Our contribution here is a greedy algorithm which will
propose a corrected matrix which increases the value of any
edge on which an anomaly is detected. Our process adds the
edges one by one, beginning with an independent set and
ending with a clique, in an order as compatible as possi-
ble with the input matrix, maintaining throughout a chordal
graph at each edge-addition step. This process defines as a
side-effect maximal subtriangulations of the graphs defined
by the input matrix, but with a better complexity than if the
chordal subgraphs were computed separately for each graph
of the threshold family.

Our process relies on a new characterization of the edges
which can be added to a chordal graph without loosing chor-
dality, which in turn yields a new edge-composition scheme
on edges which characterizes chordal graphs.

The paper is organized as follows: we give some previous
results and definitions in Sect. 2; in Sect. 3, we present and
study the threshold family of graphs defined by an additive
matrix, and define an edge-addition construction scheme for
the class of chordal graphs; Sect. 4 contains our proposed
algorithm; in Sect. 5, we give some experimental insights
then go on to conclude with some open questions and per-
spectives.

2 Preliminaries

We will first give some definitions and properties which will
be useful in the rest of the paper.

2.1 Additive matrices

A dissimilarity on a finite set X is a function δ: X2 → IR+
such that ∀x, y ∈ X, δ(x, y) = δ(y, x). A dissimilarity is
represented by a pairwise comparison symmetric matrix. A
distance is a dissimilarity such that ∀x, y ∈ X, δ(x, y) =
0 ⇐⇒ x = y and∀x, y, z ∈ X, δ(x, y)+δ(y, z) ≥ δ(x, z).

A phylogeny or evolutionary tree is an unrooted binary
tree with all edges weighted with positive values. We will
denote by L the set of leaves representing the set of taxa.
Figure 1 gives a simple example of such a tree.

For a, b ∈ L, we will denote by d(a, b) the length of the
ab-path from a to b in the phylogeny, which gives the evo-
lutionary distance between a and b. This distance is called
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Fig. 1 A phylogeny T

an additive distance and the associated matrix on L× L is
called an additive matrix. Note that an additive matrix is a
special kind of dissimilarity matrix.

Additive matrices are well-studied and the following prop-
erty, called the Quadrangular Inequality, characterizes them:

Characterization 2.1 [2] A distance matrix M on a set of
taxa is additive iff for any quadruple {a, b, c, d} of taxa, from
the 3 sums d(a, b)+d(c, d), d(a, c)+d(b, d) and d(a, d)+
d(b, c), the two largest are equal.

The set of values of a dissimilarity matrix M can be ordered
from 0 (as M[x, x] = 0) to the maximal value. This defines
a number of different thresholds: 0, 1, . . . , k, in increasing
order. An ordinal matrix of a dissimilarity matrix is thus
defined as the matrix obtained by replacing each dissimilar-
ity value by its threshold. We will denote by θ the function
giving the threshold rank corresponding to a dissimilarity.

Example 2.2 The phylogeny from Fig. 1 yields the following
dissimilarity and ordinal matrices:

M a b c d e
a 0 6 12 12 16
b 0 12 12 16
c 0 6 10
d 0 8

The dissimilarity matrix M of T

W a b c d e
a 0 1 4 4 5
b 0 4 4 5
c 0 1 3
d 0 2
The ordinal matrix W of T

Note that M is an additive matrix.
The corresponding 6 thresholds are the following: θ(0) =

0, θ(6) =1, θ(8) =2, θ(10) =3, θ(12) =4, θ(16) =5.
Dissimilarity values are: θ−1(0) = 0, θ−1(1) = 6, θ−1(2) =
8, θ−1(3) = 10, θ−1(4) = 12, θ−1(5) = 16.

2.2 Chordal graphs and triangulations

A graph G = (V , E) is said to be chordal or triangulated if
it contains no chordless cycle on more than 3 vertices. We will
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need the following tree-oriented characterization for chordal
graphs, due independently to Walter, Buneman and Gavril:

Characterization 2.3 [14,19,29] A graph is chordal iff it is
the intersection graph of a family of subtrees of a tree.

Graph inclusion: If G = (V , E) is a graph and G′ = (V , E′)
is another graph on the same vertex set, we will write G ⊆ G′
iff E ⊆ E′ and G ⊂ G′ iff E ⊂ E′ (⊂ denotes strict inclu-
sion).

In [27], Rose, Tarjan and Lueker gave the following defi-
nition of minimal triangulation:

Definition 2.4 [27] If G = (V , E) is a non-chordal graph,
a chordal graph H = (V , E + F) is said to be a minimal
triangulation of G if ∀F ′ ⊂ F , graph (V , E+F ′) fails to be
chordal.

In the same paper, they proved that only one edge needs to
be removed and the resulting graph tested:

Theorem 2.5 [27] Let G = (V , E) be a graph, let H =
(V , E + F) be a chordal graph; H is a minimal triangula-
tion of G iff ∀f ∈ F , graph (V , (E + (F \ {f }))) fails to be
chordal.

This result relies on the following Lemma from the same
paper, which ensures that, given two chordal graphs which are
mutually inclusive, there is an ordering on the edges which
need to be added to the smaller graph which will maintain
chordality at each edge-addition step.

Lemma 2.6 [27] Let G1 = (V , E1) be a chordal graph, let
G2 = (V , E2) be a chordal graph such that G1 ⊂ G2. Then
∃f ∈ E2 \ E1 such that G′ = (V , E2 \ {f }) is chordal.

We would like to point out that the property described by
Lemma 2.6 is far from trivial; it fails to hold for hole-free
graphs (graphs with no chordless cycle with length strictly
greater than 4), as illustrated by the counterexample below,
and it is not known whether it holds for weakly chordal graphs
(graphs with no hole, and no hole in the complement).

Counterexample 2.7 Graphs G1 and G2 in Fig. 2 are hole-
free graphs. G2 can be obtained from G1 by adding edges
ac and df , but G1 + {ac} and G1 + {df } are not hole-free
graphs.

Maximal subtriangulation was to the best of our knowl-
edge introduced in 1983 by Erdös and Laskar ([17]) in view
of removing a minimum number of edges in order to make
a graph chordal. Maximal subtriangulation is defined in a
fashion similar to minimal triangulation:

Definition 2.8 Let G = (V , E) be a non-chordal graph, let
H = (V , E \ F) be a chordal graph. We will say that H is a
maximal sub-triangulation of G if∀F ′ ⊂ F, (V, (E\F)+F ′)
fails to be chordal.

ba

def

ba

def

c

c

G1

G2

Fig. 2 Graphs of Example 2.7

3 Maintaining a family of chordal graphs

3.1 The threshold family of graphs defined by a
dissimilarity matrix

We will use the ordinal matrix associated with a dissimilar-
ity matrix to define the corresponding threshold family of
graphs:

Definition 3.1 LetAbe a set of taxa with dissimilarity matrix
M; let W be the corresponding ordinal matrix, on thresholds
0, 1, . . . , k. We will define a family of graphs G0 ⊂ G1 ⊂
. . . ⊂ Gk , called the threshold family of graphs associated
with W (and thus with M), with Gi = (V , Ei), V = A, and
ab ∈ Ei iff WA[a, b] ≤i.

Remark 3.2 The threshold family of graphs defined above
should not be confused with threshold graphs, which are
defined in correlation with integer programming; threshold
graphs are characterized as being chordal, with a chordal
complement, and P4-free (see[20] and [12]), which is defi-
nitely not the general case for the graphs of a threshold family
as defined by Definition 3.1.

Note that G0 is an independent set (a graph with no edges)
and that Gk is a clique (a graph with all possible edges).

The threshold matrix W induces on the set of edges V×V
a preorder relation R: ab R cd iff W [a, b] ≤ W [c, d]. R
defines an ordered partition of the edges of Gk; each class Fi

of edges is defined by Fi = Ei − Ei−1 =
{xy |W [x, y] = i}. Graph Gi is obtained from graph Gi−1
by adding set of edges Fi . R defines a total ordering on these
classes, with Fi < Fj iff i<j.

Example 3.3 Figure 3 illustrates the family of non-trivial
graphs constructed from the matrix of Example 2.2. Ordered
partition on the edges: {ab, cd} < {de} < {ce} < {ac, ad,
bc, bd} < {ae, be}
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Fig. 3 Graphs G1 ⊂ G2 ⊂ G3 ⊂ G4 representing matrix of Example 2.2. G0 is an independent set and G5 is a clique

Property 3.4 If M is an additive matrix then the threshold
family of graphs defined by M is a family of chordal graphs.

Proof Let T be the phylogeny associated with an additive
matrix M , let Gi be the graph corresponding to threshold
i∈ [0..k]. It is easy to add extra internal nodes to T in order
to obtain a tree T ′ where there is a node at mid-distance
between any pair {a, b} of vertices. Let us now consider the
family of subtrees of T ′ defined by: for each leaf x, T ′x is
the subtree containing all nodes at distance θ−1(i)/2 or less
from x; Gi is the intersection graph of this family. By virtue
of Characterization 2.3, Gi is chordal. �
The converse of Property 3.4 fails to be true: there are ordi-
nal matrices which represent a chordal threshold family of
graphs, but for which there is no corresponding additive ma-
trix.

Counterexample 3.5 An ordinal matrix W which can be
associated with no dissimilarity matrix:

W a b c d
a 0 3 2 1
b 0 4 4
c 0 1

W is associated with a threshold family of chordal graphs,
but this matrix is the ordinal matrix of no additive matrix: for
any dissimilarity δ of which W is the ordinal matrix, we have
δ(a, c)+δ(b, d) = θ−1(2)+θ−1(4), but δ(a, b)+δ(c, d) =
θ−1(3)+θ−1(1) and δ(a, d)+δ(b, c) = θ−1(1)+θ−1(4), so
δ(a, c)+ δ(b, d) is strictly greater then the other two sums,
which contradicts the Quadrangular Inequality 2.1.

3.2 Preconditionning matrices

Experimental results show that not only do the dissimilarity
matrices biologists have to work with fail to be additive, but
the corresponding graphs very often fail to be chordal.

As we have stated in our introduction, our goal is to pre-
condition a matrix into describing a family of chordal graphs,
while dealing with threshold values which are too low. As a
result of Counterexample 3.5, forcing a threshold family into
a chordal family will not in general be sufficient to ensure
that the matrix becomes additive; however, it may well be an
important first step in error recovery.

Example 3.6 Modified dissimilarity matrix of Example 2.2,
with “incorrect” values for ad and bc, which have been low-
ered from 12 to 8. This describes a family (Hi) of graphs. H2
and H3 fail to be chordal; they are presented in Fig. 4.

a b c d e
a 0 6 12 8 16
b / 0 8 12 16
c / / 0 6 10
d / / / 0 8

3.3 An edge-addition composition scheme for chordal
graphs

In order to compute a threshold family of graphs which are
chordal and such that each graph G′i of the new family is
a subgraph of the corresponding original graph Gi , we will
construct clique Gk from independent set G0 by adding at
each step an inclusion-maximal set of edges which maintains
chordality.

The problem of maintaining a chordal graph while adding
edges has been examined by Ibarra ([25]), who has obtained
good results on the queries as to whether inserting or delet-
ing an edge preserves a chordal graph. He uses clique trees
(see [10] for a solid introduction of this concept) as an inter-
mediate representation, and uses his work as an illustration
of the power of this representation of a chordal graph. He
derives a characterization of the edges which can be inserted
or deleted, expressed in terms of clique trees.

We will propose yet a different approach, for which we
will need the notion of 2-pair, defined by Hayward, Hoàng
and Maffray to characterize weakly chordal graphs.

H2 H3

ba

c

e e

d

a

c

b

d

Fig. 4 Graphs H2 and H3 of Example 3.6
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Definition 3.7 [22] A pair {a, b} of non-adjacent vertices is
called a 2-pair iff every chordless path from a to b is of length
exactly 2.

Theorem 3.8 Let G1 be a chordal graph, let {a, b} be a pair
of non-adjacent vertices of G1, let G2 be the graph obtained
from G1 by adding edge ab; then G2 is chordal iff {a, b} is a
2-pair of G1.

Proof Let G1 be a chordal graph, let {a, b} be a pair of non-
adjacent vertices of G1, let G2 be the graph obtained from
G1 by adding edge ab, let µ = ax1x2...xkb be a longest
chordless path from a to b in G1. In G2, ax1x2...xkba will
be a chordless path on more than 3 vertices iff µ is of length
greater than 2, that is iff {a, b} fails to be a 2-pair of G1. �
An additional property which is vital to our problem is ensur-
ing that we are able to move from one graph of the threshold
family to the next.

Property 3.9 Let G1 be a chordal graph, let G2 be a chordal
graph such that G1 ⊂ G2. Then G2 can be obtained from G1
by repeatedly adding an edge between the two vertices form-
ing a 2-pair.

Proof Let G1 be a chordal graph, let G2 be a chordal graph
such that G1 ⊂ G2. By Lemma 2.6, ∃ab ∈ E2 \ E1 such
that (V , E2 \ {ab}) is chordal. By Theorem 3.8, {a, b} is a
2-pair of G2\{ab}. If we repeat this until we obtain graph G1,
we will have constructed (in reverse) a 2-pair edge addition
ordering which enables us to construct G2 from G1. �
We use Theorem 3.8 to propose the following composition
scheme for chordal graphs, which starts with an independent
set and constructs the desired chordal graph by an edge-addi-
tion process. This is well-adapted to our problem, as we want
to start with an independent set, scan a succession of mutu-
ally inclusive chordal graphs, and end with a clique, which
is also chordal.

Composition Scheme 3.10 A graph on n vertices is chordal
iff it can be constructed by starting with an independent set
on n vertices, and by adding at each step an edge between
the two vertices forming a 2-pair.

Remark 3.11 Classical composition schemes for chordal
graphs are vertex-addition schemes, such as starting with
a clique and adding a simplicial vertex at each step. Very
recent work by Berry, Heggernes and Villanger ([6]) gives a
much more general process for adding a vertex v to a chordal
graph, by characterizing the edges incident to v which must
be added along with an edge vw in order to maintain chor-
dality.

4 An additive data pre-processing algorithm

4.1 Algorithmic strategy

We now propose an algorithm based on Composition Scheme
3.10, which uses as input a dissimilarity matrix M and out-
puts a dissimilarity matrix M ′ defining a threshold family of

chordal graphs, and which raises all the thresholds it modi-
fies.

Our algorithm starts with an independent set of vertices
(graph G0), and at each step i will construct graph Gi from
graph Gi−1 by adding as many edges as possible. The algo-
rithm at step i repeatedly chooses, from a set of candidate
pairs, a pair of vertices which allows to maintain a chordal
graph.

At the beginning of step i, a candidate pair is defined as
any pair {a, b} such that M[a, b] ≤ θ−1(i) and ab is not an
edge of Gi−1.

In order to remain as close as possible to the original
matrix, we will give priority to the candidate pairs which
correspond to the smallest threshold. We will implement this
by using a FIFO queue; at each step, i, the new candidate
pairs are added to the queue, and the algorithm then repeat-
edly chooses the first pair of the queue which is a 2-pair of
the current graph, and adds it to the current graph Gi under
construction.

By Property 3.9, at the end of the algorithm, the FIFO
queue is empty and every edge has been given a threshold in
the corrected matrix M ′ obtained.

4.2 Algorithm

Algorithm ADD-SUB-TRI
Input: A dissimilarity matrix M on n taxa, with threshold 0,
..., k.
Output: A dissimilarity matrix M ′, such that every graph in
the threshold family is chordal.
Initialization:
G0 is an independent set on n vertices;
Create an empty FIFO queue Q;
begin
For i = 1 to k−1 do

Gi ← Gi−1;
Compute the set Fi of pairs {a, b}

such that M[a, b] = θ−1(i);
Add Fi to Q;
Repeat

Scan Q and remove the first pair ab
which is a 2-pair;

Add edge ab to graph Gi ;
M ′[a, b]← θ−1(i);
Until Q contains no 2-pair of Gi ;

Give all remaining edges in Q value θ−1(k) in M ′;
Add all remaining edges in Q to Gk−1 to form Gk , a clique
on n vertices.
end

Example 4.1 On the “incorrect” matrix given in Example
3.6, at step 2, adding edge bc after adding edge ad would
induce a 4-cycle abcd . We will add edge bc at step 4, after
edge bd, thus raising the value of bc from 8 back to its “nor-
mal” value, 12. Note that edge ad has not been corrected.

As a consequence of Composition Scheme 3.10, Algo-
rithm ADD-SUB-TRI computes a threshold family of graphs
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of which each member is a maximal sub-triangulation of the
corresponding graph of the original matrix.

4.3 Complexity analysis

In [28], Spinrad and Sritharan propose an algorithm which
repeatedly adds a 2-pair to the graph; they use a data structure
which maintains the “2-pair structure” of the graph, which
costs O(n2) to update for each edge addition. As there are
O(n2) edges to process, using this 2-pair structure, our global
complexity is thus O(n4).

Note that if we computed a maximal sub-triangulation in
O(�m) time for each of the O(n2) graphs of the threshold
family, this would cost O(n5).

5 Experimental results

We have implemented Algorithm ADD-SUB-TRI and run it
on both experimental and artificial data. In a first step, we
wanted to evaluate on experimental phylogenetic data how
far this data is from data yielding a threshold family of chordal
graphs. In a second step, since biologists do not have at their
disposal exact phylogenetic data, we have run simulations
in order to estimate the behaviour of Algorithm ADD-SUB-
TRI. The resulting code is a C++ package enabling various
options.

5.1 Weak/strong proximity of experimental threshold
family with triangulated family

We first ran Algorithm ADD-SUB-TRI on real data to mea-
sure how “distant” a matrix obtained experimentally can be
from a triangulated distance matrix.

We selected experimental data where thresholds are ex-
pected to be too low, with data sets ranging from being
very close to phylogenetic, to others considered very unpure.
We present results for five data matrices, ranging from size
11 to 57 (quite current sizes for phylogeny reconstruction)
and dealing with plants and bacteria, with different so-called
“noise” levels. Data sets 1, 2, 4 and 5 come from the data-
bases of the French National Agronomical Research Institute
(INRA). Data sets 1, 2, 4 and 5 respectively deal with data
about fodder plants, sunflower species, wheat taxa and mil-
dew races for the sunflower plant. Data sets 4 and 5 are known
to be rather unpure. Data set 3 is a comparison between three
genes of the TAT system (a system enabling folded protein
transport through membranes) of several species of bacteria
and is considered as having a high noise-level, and as such
is analyzed extensively in [18] as having a questionable tree-
structure.

Table 1 gives1 the characteristics of the threshold fami-
lies of graphs for these five matrices. These matrices present
a percentage of triangulated graphs varying widely, from 4%

1 The tables are presented at the end of the paper.

to 96%. The families of graphs from experimental matrices
1 and 2 present a high percentage of triangulated graphs. As
could be expected, data sets 4 and 5 conversely present a high
proportion of non-triangulated graphs.

Table 2 gives results obtained by an execution of Algo-
rithm ADD-SUB-TRI. These yield a criterion for evaluating
the “distance” of a graph from a triangulated graph, by count-
ing the percentage of edges which have been raised from
some given threshold i to a higher threshold i + j . As the
tree model was accepted for matrix 3 and is true for matri-
ces 4 and 5, we can conclude that experimental data may be
far from additive tree distances and even far from yielding a
family of triangulated graphs.

5.2 Simulations

Next, we achieved a more thorough examination of how close
the output of Algorithm ADD-SUB-TRI was to the original
phylogeny. Since biologists do not have exact data on hand,
we have run our algorithm on computer-generated additive
matrices where some dissimilarity values were then artifi-
cially decreased.

Our experimental protocol is the following: we begin by
randomly generating an additive matrix A; then we randomly
generate from A a biased matrix B obtained by decreasing
some of the dissimilarities in A; finally, we run Algorithm
ADD-SUB-TRI on B, resulting in matrix T . We control the
bias of B versus A with two parameters: the percentage of
biased dissimilarities and the maximal amplitude of decrease
for biased dissimilarities. Thus the average dissimilarity com-
puted on B matrix differs from that computed on A, and so
are we authorized to refer to the artificial modification as a
bias.

Our aim is to compare couples (A, B) versus couples
(A, T ) to see whether matrix T is nearer to A than B is. To
do this we use the metric and topological criteria described
in [18]. Among these, we first checked that the arboricity
criterion is improved by our method.
Arboricity criterion
The arboricity criterion is a measure of the tendance for any
dissimilarity matrix D to be represented by an additive ma-
trix:

Arb(D) = 1
(n

4)
| {x, y, z, t} such that Smax − Smed <

Smed − Smin | where Smin, Smed and Smax respectively denote
the three sums involved in the Characterization of additive
matrices (see characterization 2.1), sorted in increasing order.
In the ideal case (additive matrix M), Smed and Smax are equal,
soArb(M) scores its maximal value (1). For any dissimilarity
matrix D, the more numerous quadruplets with Smed nearer
to Smax than to Smin are the higher Arb(D) is.

Combining high, medium and low values for the two
parameters p and a controlling the bias leads to the results
in Table 3. Since our algorithm forces dissimilarity B to-
wards a triangulated dissimilarity T (a necessary condition
for an additive matrix) the improvement for arboricity was
expected. Closely examining the improvement quality with
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regard to bias parameters p and a shows the following: in the
range 40–90% for parameter p, for constant value of p, the
higher parameter a is, the more arboricity is “restored” by
our algorithm.
Metric criteria
We systematically compute the following criteria:

– the average of deformations between two dissimilarity
matrices D1 and D2:
Def(D1, D2) = 2

n(n−1)
� | D1(x, y)−D2(x, y) |,

– the Kruskal stress:
KS(D1, D2) =

√
�[D1(x,y)−D2(x,y)]2

�D1
2(x,y)

.

As expected in view of Garetta and Guénoche’s results
in [18], Def and KS are highly correlated (0.958) so we will
only mention the behaviour of KS. Statistics on parameter
KS in Table 4 lead to the conclusion of the efficiency of
Algorithm ADD-SUB-TRI, with the strikingly similar ten-
dance observed for arboricity criterion ARB: again, in the
range 40–90% for parameter p, the higher bias a is, the better
T is.
Topological criterion
Characterization 888 for additive matrices states that for any
quadruple x, y, z, t in a phylogeny, from the three sums
of two values which can be computed with the six available
distances, the greater sums are equal. The smallest sum indi-
cates the topology for quadruple x, y, z, t , that is whether x
is associated with y or z or t on one side of an internal branch
in the phylogenetic tree. Thus a topological criterion compil-
ing the percentage of quadruplets sharing the same topology
for dissimilarities D1 and D2 is computed as follows:

wrq(D1, D2) = 1/
(
n

4

) | {x, y, z, t} having same topol-
ogy according to D1 and D2 |.

If D1 is the underlying additive matrix, this topologi-
cal criterion represents the percentage of well represented
quadruplets (wrq). In this case, the higher wrq is (≤ 1), the
more accurate D2 is. The results obtained are presented in
Tabel 5. In conclusion all three criteria indicate that
Algorithm ADD-SUB-TRI seems a promising preprocess-
ing method, a good first step in error recovery. However, its
accuracy must be enforced so that it stays close enough to an
aditive matrix.

6 Conclusion, perspectives and open questions

Regarding the complexity of Algorithm ADD-SUB-TRI as
presented in this paper, we use data structures from [28],
which deals with the problem of maintaining a two-pair struc-
ture in an arbitrary graph, whereas we deal with chordal
graphs only. We believe that for chordal graphs this com-
plexity should be improved, especially so since in a chordal
graph there are many two-pairs which are not disrupted by
an edge-addition, so that it may not be necessary to update
the two-pair structure at every edge-addition step.

We also feel that in many biological data preprocessing
problems, such as those dealing with biochip data, it may be
interesting to maintain a chordal graph, but not necessarily by

systematically lowering existing thresholds; it may be inter-
esting to use the process described in [6] to allow the user to
choose at each step whether to lower or to raise the thresholds,
depending on how many modifications this causes.
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Appendix

Tables for section 5

Table 1 Study of the threshold families of graphs associated with exper-
imental dissimilarity matrices – All data sets are phylogenetic data.
Matrices 1 and 2 have a low noise level; matrices 3, 4 and 5 present a
high noise level

Data set 1 2 3 4 5

size of the dissimilarity matrix M 17 41 15 11 57
(number of taxa)

size of the threshold family F of graphs 82 81 88 54 97
associated with matrix M
(number of thresholds)

number of triangulated graphs in F 79 71 45 17 4
percentage of triangulated graphs 96.3 87.7 51.1 31.5 4.1

Table 2 Influence of Algorithm ADD-SUB-TRI on experimental dis-
similarity matrices (see Table 1)

Data set 1 2 3 4 5

number of cells for the upper triangular 136 820 105 55 1596
matrix induced from the symmetric
dissimilarity matrix

number of increased cells 4 49 18 11 889

percentage of increased cells 2.9 6.0 17.1 20.0 55.7

Table 3 Statistics on arboricity criterion improvement. The table com-
piles averages computed from 100 dissimilarity matrices B and T of
size 20 (A: additive matrix, B: biased matrix computed from A, T :
output matrix for ADD – SUB – TRI run on B) for ARBi(B, T ) =
Arb(T )−Arb(B)/1−Arb(B) (percentage of arboricity “restored”).
p is the percentage of cells which were decreased from matrix A to
matrix B. a is the maximal decrease rate (computed from the maximal
difference of cell values in matrix A)

p
10 20 30 40 50 60 70 80 90

10 4.0 3.6 4.6 4.3 4.7 4.1 3.9 3.4 1.8
a 30 6.8 11.0 13.8 14.8 15.7 15.0 13.3 13.5 11.6

50 0.7 9.4 13.7 16.8 18.3 18.4 18.3 18.9 15.4

Table 4 Statistics on the improvement of the metric Kruskal stress crite-
rion. The table compiles averages computed from 100 triples (A, B, T )
(A: additive matrix (size 20), B: biased matrix computed from A, T :
output matrix for ADD – SUB – TRI run on B) for KSi(A, B, T ) =
KS(A, B) − KS(A, T )/KS(A, B) (percentage of deformation cor-
rected). Bias parameters p and a are described in Table 3

p
10 20 30 40 50 60 70 80 90

10 3.4 4.0 4.1 4.3 4.0 3.8 3.3 3.1 1.7
a 30 9.3 11.5 14.1 15.0 15.7 14.2 13.0 12.2 10.0

50 7.3 10.2 12.9 15.1 17.4 17.3 17.6 17.5 15.0

Table 5 Statistics on the improvement of the topological criterion
counting taxon quadruplets having the same topology as in the ref-
erence matrix A.The table compiles averages computed from 100 tri-
ples (A, B, T ) (A: additive matrix (size 20), B: biased matrix com-
puted from A, T : output matrix for ADD – SUB – TRI run on B) for
WRQi(A, B, T ) = wrq(A, T ) − wrq(A, B)/1 − wrq(A, B) (per-
centage of common topology rate corrected). Bias parameters p and a
are described in Table 3.

p
10 20 30 40 50 60 70 80 90

10 3.7 2.3 5.6 3.2 3.0 3.2 3.1 3.5 1.8
a 30 7.3 9.8 11.9 12.2 12.4 11.4 9.9 8.5 7.7

50 0.9 1.6 1.7 4.0 6.2 4.3 4.1 5.6 2.2


