Representing a concept lattice by a graph
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Abstract

Concept lattices (also called Galois lattices) are an ordering of the maximal rect-
angles defined by a binary relation. In this paper, we present a new relationship
between lattices and graphs: given a binary relation R, we define an underlying
graph G g, and establish a one-to-one correspondence between the set of elements of
the concept lattice of R and the set of minimal separators of Gg.

We explain how to use the properties of minimal separators to define a sublattice,
decompose a binary relation, and generate the elements of the lattice.
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1 Introduction

One of the important challenges in data handling is generating or navigating
the concept lattice of a binary relation.

Concept lattices are well-studied as a classification tool ([1]), are used in sev-
eral areas of Database Managing, such as Object-Oriented Databases ([44]),
inheritance lattices (|22,10]), mining for association rules ([45,33]), generating
frequent sets ([43]), and are a promising aid for the rapidly emerging field of
data mining for biological databases.

In this paper, we present a new paradigm for describing and understanding
concept lattices, by equating the concepts of the lattice with the set of minimal
separators of an underlying graph.

The notion of minimal separator, introduced by Dirac in 1961 to characterize
chordal graphs ([13]), has been extensively studied during the past decade on
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non-chordal graphs ([25,24,31,3,42]), and has yielded many new theoretical
and algorithmical graph results.

We apply some of these results to analyzing and decomposing a binary rela-
tion and the associated lattice. The mechanisms involved are illustrated on a
running example.

The paper is organized as follows:

Section 2 gives some preliminary notions on concept lattices and graph sepa-
rators, and presents our example. For undefined notions, the reader is referred
to the classical works of [11] and [17]. In Section 3, we define the underlying
graph G'r which we use to represent a binary relation R, describe some of its
properties, and explain how it relates to the concept lattice L(R). In Section
4, we define a sublattice by making into a clique a minimal separator of the
underlying graph. Section 5 shows how to use a clique minimal separator to
decompose a binary relation. In Section 6, we compute the successors of an el-
ement. Section 7 addresses the algorithmic issue of generating all the elements
of the lattice efficiently.

2 Preliminaries

2.1 Concept lattices

Originally, the lattice defined by a binary relation R was known as the Galois
lattice of R, as described by Barbut and Monjardet (|1]), and was studied by
several mathematicians. Later, Ganter and Wille (|16|) introduced the wider
notion of 'context’, renamed these lattices as ’concept lattices’, and studied
them extensively, with many interesting results. When the terminologies be-
tween these two tendencies differ, we will give both terms in the definitions
below.

Given a finite set P of "properties" or "attributes" (which we will denote by
lowercase letters) and a finite set O of "objects" or "tuples" (which we will
denote by numbers), a binary relation R is a proper subset of the Cartesian
product P x O; the triple (P, O, R) is called a context. We will refer to the
elements of the relation as ones, and to the non-elements as zeroes. Given a
subset P’ of P and a subset O’ of O, we will say that the set RN (P’ x O') is
a sub-relation of R.

Definition 2.1 Given a context C = (P, O, R), a concept or closed set of
C, also called a mazximal rectangle of R, is a sub-product A x B C R such



thatVx € O — B,3y € A|(y,z) € R, andVx € P — A,y € B| (z,y) ¢ R. A
s called the intent of the concept, B is called the extent.

Note that in general, a context will define an exponential number of concepts.

Example 2.2 P = {a,b,c,d,e, f}, O = {1,2,3,4,5,6}. The table below de-
scribes binary relation R:

a|l bl c| d| e]|f
1 X | X | x| X
2| X | x| x
3| x| x X
4 X | X
) X | x
6| x

be X 12 and abf x 3 are mazimal rectangles (concepts) of R. be is the intent
of rectangle bc x 12, and 12 its extent.

A lattice is a partially ordered set in which every pair {A, A’} of elements
has both a lowest upper bound (denoted by join(A, A’)) and a greatest lower
bound, (denoted by meet(A, A"), [11]), extending the notion of lowest common
ancestor for a pair of nodes in a tree.

Given a context C' = (P, O, R), the concepts of C, ordered by inclusion on the
intents, define a lattice, called a concept lattice or Galois lattice. A dual
lattice is defined by inclusion on the extents. We represent a lattice by the
Hasse diagram of the partial ordering on all maximal rectangles: transitivity
and reflexivity arcs are omitted. Concepts are often referred to as elements
of this lattice.

Such a lattice, sometimes referred to as a complete lattice, has a smallest
element, called the bottom element, and a greatest element, called the top
element.

An element A" x B’ is said to be a descendant of element A x Bif A C A'.
An element A’ x B’ is said to be a successor of element A x B if A C A’ and
there is no intermediate element A” x B" such that A C A” ¢ A’. The set of
successors of an element is called the cover of this element. The successors of
the bottom element are called atoms.

The notions of predecessor, ancestor and co-atom are defined dually.



A path from bottom to top in the Hasse diagram is called a maximal chain
of the lattice.

Example 2.3 Figure 1 gives the concept lattice of the relation of our example.
ab x 23 and bc x 12 are not comparable, ab x 23 is a successor of a x 236,
a x 236 is a predecessor of ab x 23. The atoms of L(R) are: a x 236, b x 123,
¢ x 125 and d x 145. (0 x 123456, b x 123, be x 12, abc x 2, abedef X 0) is a
mazimal chain of the lattice.

abcdef x o

\abf X 3\ \abc X 2\ \bcdex 1\
lab x 23| [bc x 12 | [cd x 15 | | de x 14 |
la x 236] |[bx 123] [c x 125] |d x 145]|

@ x 123456

Figure 1. Concept lattice L(R) of relation R of Example 2.2.

2.2  Graphs

The graphs used in this work are finite and undirected. A graph is denoted
G = (V,E); V is the vertex set, |V| =n and E C V2={{z,y}|z,y € V,z # y}
is the edge set, |E| = m. For X C V, G(X) denotes the subgraph induced by
X in G. The neighborhood of vertex x (the set of vertices y such that zy is
an edge of F) is denoted by N(z). If zy is an edge of E, we say that x and
y see each other. For X C V, N(X) = Uzex(N(z)) — X. A clique is a set
X of pairwise adjacent vertices (i.e. Vx # y € X, zy € E). An independent
set (sometimes called a stable set) is a set X of pairwise non-adjacent vertices
(ie.Vx #y e X, zy ¢ E).

An asteroidal triple of vertices ([27]) is an independent set of three vertices
{21, 22,23} such that for every pair (z;,z;) of vertices of this triple, there is
a path from z; to x; which does not intersect N(xy), where z; is the third
vertex of the triple. A graph is said to be AT-free if it has no asteroidal triple
of vertices. A claw is a subgraph isomorphic to K 3, a graph on four vertices
x1, %9, T3, 4 With only edges z129, x1x3 and z1x4.

We will also need the notion of minimal triangulation, which is the process
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Figure 2. Graph of example 2.5.

of embedding a graph into a chordal graph by the addition of an inclusion-
minimal set of edges. A graph is said to be chordal (or triangulated) if it
contains no chordless induced cycle of length strictly greater than three.

Definition 2.4 (/36]) Let G = (V, E) be a non-chordal graph; H = (V, E4+F)
is a minimal triangulation of G if H is chordal and for all proper subset
F' of F, graph (V, E + F') fails to be chordal.

The basic notion we use in this work is that of minimal separator.

A separator S of a connected graph G is a subset of vertices such that
subgraph G(V — S) is disconnected. S is called an xy-separator if z and
y lie in different connected components of G(V — S); S is called a minimal
xy-separator if S is an xy-separator and no proper subset of S separates x
from y. Finally, S is called a minimal separator if there is some pair {z, y}
of vertices such that S is a minimal xy-separator. Note that if zy ¢ E, then
the graph has at least one minimal zy-separator.

Example 2.5 In the graph from Figure 2, S = {a,b} is an xy-separator
and an yz-separator. S" = {a} is also an yz-separator. S is a minimal Ty-
separator, but not a minimal yz-separator, since S contains a smaller yz-
separator S'.

The following characterization is often used in graph papers:

Property 2.6 Let G = (V, E) be a connected graph, let S be a vertex set.
S s a minimal separator of G iff there are at least two distinct connected
components A and B of G(V —S) such that N(A) = N(B) = S; A and B are
called full components.

A separator S is called a clique separator if it is a separator and a clique;
we will say that we saturate a non-clique separator S if we add all missing
edges necessary to make S into a clique.

A vertex is said to be universal if it sees all the other vertices of the graph.

Property 2.7 A vertex is universal iff it belongs to all the minimal separators



of the graph.

Proof: Let z be a universal vertex of a graph G = (V, E); suppose there is
some minimal separator S which does not contain z; let C' be the component
of G(V — S) which z belongs to, let C' be a second component of G(V — 5),
let y be a vertex of C": clearly, zy ¢ E, which contradicts the assumption that
x is universal in G.

Conversely, Let x be a vertex which is not universal; let y be a vertex which
x does not see: there must be a minimal separator which separates x from y
and therefore does not contain x. O

As a consequence of Property 2.7, if X is the set of universal vertices of graph
G, and S is a non-empty set of vertices, then S is a minimal separator of a
connected component of G(V — X) iff SU X is a minimal separator of G. The
set of universal vertices of a graph can be found in linear (O(m)) time.

Definition 2.8 A subset X of vertices is said to be a clique module iff
Vo,y € X, {z} UN(z) = {y} UN(y).

Belonging to a maximal clique module defines an equivalence relation ([4]),
and it is easy to show that the corresponding partition can be computed in
linear time using Hsu and Ma’s partition refinement algorithm ([23]), which
is described on chordal graphs, but works just as well on arbitrary graphs. In
the rest of this paper, we will often refer to a maximal clique module X as if
it was a vertex, with degree |[N(X)|.

Definition 2.9 A vertex x is simplicial if N(z) is a clique, a mazimal clique
module X 1is simplicial if N(X) is a clique.

Simplicial vertices can be seen as the ’opposite’ of universal ones, as illustrated
by the following property, which is the mirror of Property 2.7:

Property 2.10 (/3]) A vertex is simplicial iff it belongs to no minimal sep-
arator of the graph.

We will discuss simplicial vertices again in Section 3.

3 The co-bipartite graph underlying a binary relation

In a previous work [5], it is shown that the elements of the Galois lattice of the
incidence relation of an undirected graph define separators of the complement
of the graph. This leads us to represent a given context by a graph constructed



on the complement of the relation.

Definition 3.1 Let C = (P, O, R) be a context; we will define an associated
underlying graph, denoted G g, as follows:

o The vertex set of Gg s PUQ.

e P and O are cliques.

o For a vertex x of P and a vertez y of O, there is an zy edge in Gg iff (z,y)
1s not in R.

Figure 3. Underlying graph Gg of relation R of Example 2.2.

Note that only the edges between a vertex of P and a vertex of O are relevant
and need be traversed when searching the graph; thus m will refer to |P U
O| — |R|. In order to make our illustrations clearer, we will omit the internal
edges of P and O in our figures in the rest of this paper.

By construction, the graph G'r we have just described belongs to the class of
co-bipartite graphs. The graphs of this class have several remarkable proper-
ties, such as being AT-free and claw-free. This class is also hereditary: any
subgraph of a co-bipartite graph which has more than one vertex is again
co-bipartite. Moreover, since the relations we work on are considered as non-
empty, graph G is always connected.

This ensures several nice properties on the minimal separators of co-bipartite
graphs, which makes them easier to handle than on more general graphs.

Lemma 3.2 An independent set in a co-bipartite graph is of size at most two.

Proof: Suppose there exists a co-bipartite graph G = (V, E) with an inde-
pendent set X C V of size three or more. By definition of a co-bipartite graph,
V' can be partitioned into two cliques. As X contains at least three vertices,
at least two of them are in the same clique, a contradiction. O

Corollary 3.3 A co-bipartite graph is AT-free and claw-free.

Corollary 3.4 Let G be a co-bipartite graph constructed on cliques P and
O; then every minimal separator S of G has exactly 2 connected components,



A and B, the first of which contains only vertices of P and the second only
vertices of O.

We can also give a characterization for the minimal separators in co-bipartite
graphs, derived from Property 2.6:

Characterization 3.5 Let S be a vertex set of a co-bipartite graph G =
(V,E); S is a minimal separator of G iff G(V — S) has exactly two connected
components A and B such that N(A) = N(B) = S.

We are now ready to prove our main result:

Main Theorem 3.6 Let C = (P, O, R) be a context, let G = (V, E) be the
corresponding co-bipartite graph, let A+ O C P, B£0 C O; then Ax B is a
concept of R iff S =V — (AU B) is a minimal separator of Gg.

Proof: Let C = (P,O,R) be a context, G = (V, E) the corresponding
co-bipartite graph.

(1) Let A x B be a concept of R, with A # 0, B# (), and AUB # V, let
S=V-(AUB) S =V — (AU B) is not empty. We claim that for
each a € A,b € B, S is a minimal ab-separator of Gg. First of all, S is
an ab-separator: if there was an edge ab in G, then by definition (a, b)
would not be in R and therefore A x B would not be a concept. Next
we will prove that S is minimal: suppose that it is not; by Property 2.6,
w.l.o.g. there must be some vertex x € S such that z sees no vertex of
B, which means that Vy € B, (z,y) € R; Az x B would be a rectangle of
R, which contradicts the minimality of A x B.

(2) Conversely, let S be a minimal separator of Gg, let A and B be the
connected components of G(V — S). As connected components, A and B
are not empty; as a separator, S is not empty, then AU B # V. Since
Ve € A, Yy € B, zy ¢ E and thus (z,y) € R, we can conclude that
A x B is a rectangle of R. Suppose A x B fails to be maximal: w.l.o.g.
dr e O—-B,Vy € A, (y,z) € R. Thus x € S and, in Gg, = will see no
vertex of A, so by Property 2.6, S fails to be minimal, a contradiction.

Definition 3.7 Let A X B be a concept of relation R, let S =V — (AU B).
We will say that minimal separator S represents concept A X B.

We can now reformulate Characterization 3.5 to show that, given only the
intent or the extent of a concept, it is easy to infer both parts of the concept:

Characterization 3.8 Let A x B be a rectangle of relation R, with A # 0,



B #0, and AUB # PUQ; then AX B is a concept iff in Gg, N(A) = N(B).

Main Theorem 3.6 endows the minimal separators of G with a lattice struc-
ture. This structure is related to the lattice structure of the so-called minimal
ab-separators of a graph shown by Escalante in [14], which we will mention
again in Section 7, and also to the lattice structure of subsets of vertices de-
scribed by [21,37,34,19,5].

From Main Theorem 3.6, we can deduce that a co-bipartite graph may have an
exponential number of minimal separators, since a concept lattice can have an
exponential number of elements. It is well known that, for a given size of P, the
largest lattice obtainable is the lattice describing all the subsets of P, and that
the corresponding relation has exactly one zero in each column and exactly
one zero in each line (in this case, of course, |P| = |O|). The corresponding
co-bipartite graph with a maximum number of minimal separators is thus the
graph in which |P| = |O| and each vertex of P sees exactly one vertex of O.

Example 3.9 In Figure 4, S = {a,d,e, f,3,4,5,6} is a minimal separator of
graph Gr of Figure 3, separating Cy = {b, c} from Co = {1,2}, and bc x 12 is
a concept of R and an element of L(R). In Gr, N({b,c}) = N({1,2}) = S.

Figure 4. Separator S = {a,d, e, f,3,4,5,6} of Gg.

We will now discuss how special cases such as lines of zeroes or ones of the
relation, or lattice notions such as join and meet operations and atoms and
co-atoms, can be interpreted in terms of graphs.

Interpretation of the lines of zeroes and lines of ones of the relation

Any line (column or row) of zeroes of a binary relation R corresponds to
a universal vertex of Ggr. Thus, according to Property 2.7, this line can be
deleted from R without modifying the set of concepts of (P, O, R), and can
likewise be deleted from G without modifying the structure of the minimal
separators of the graph. We will use this remark in Section 5 when decompos-
ing a relation.

If R contains a line = of ones, then x will be simplicial in G and thus, by
Property 2.10 will belong to no minimal separator of G'g. Therefore, it will



appear in every concept of (P, O, R) and can be removed from R to decrease
the number of edges during computation of the concepts.

Join and meet operations

It is easy, given two minimal separators of Gg, to find the join and meet of
the concepts that they represent.

Property 3.10 Let A; x By, Ay X By be two elements of the lattice. Let
S1=V—=(A1UBy), let Sy =V —(A3UBy), let Y = S1USy, let J = (V=Y )NO
and M = (V. =Y)NP; then J is the extent of Join(A; x By, Ay X By) and
M is the intent of Meet(A; X By, Ay X Bs).

This can be deduced from the following property:

Property 3.11 ([11]) Let A; x By, Ay x By be two elements of a concept
lattice. Then By U By is the extent of Join(A; x By, Ay X Bsy) and A1 U Ay is
the intent of Meet(A; X By, Ay X Bs).

Atoms and co-atoms

In [4], the notion of moplex was introduced as a general definition of the ex-
tremity of a graph. It is interesting to note that the moplexes of the underlying
graph G correspond precisely to the non-trivial extremities of the lattices:
its atoms and co-atoms.

Definition 3.12 (/4]) A vertex set X which defines a mazimal clique module,
and such that N(X) is a minimal separator, is called a moplez.

Property 3.13 Let R be a relation with no lines of ones, let L(R) be the
corresponding concept lattice, let Gr be the underlying graph. If A X B is an
atom of L(R) then A is a moplex of Gg; if A X B is a co-atom of L(R), then
B is a moplex of Gg; there are no other moplezres in Gg.

Proof: Let C = (P,0, R) be a context, L(R) the corresponding concept
lattice, and Gr = (V, F) the corresponding co-bipartite graph.

(1) Let A x B be an atom of L(R), represented by minimal separator S =
N(A) = N(B). Clearly, as A is a subset of P, it is a clique. We claim that
A is a module: suppose that it is not. By Definition 2.8, there must exist
z,y in A such that N(z) # N(y). We can suppose w.l.o.g. that there
exists a vertex b in O such that b € F and yb ¢ E. As a consequence,
A x B has a predecessor, the intent of which is A’ C A — {z} and the
extent of which is B’ O BU{b}. Moreover, as y € A" and R has no lines of
ones, A’ x B' cannot be the bottom element () x O of R. Therefore, A x B
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fails to be an atom, a contradiction. We can conclude, by Definition 3.12,
that A is a moplex.

A similar proof shows dually that if A x B is a co-atom of £(R) then
B is a moplex.

(2) Conversely, let A be a moplex of G, and let S = N(A) be the associated
minimal separator. By Characterization 3.5, S defines two connected com-
ponents, one of which is A; the other will be denoted B, with N(B) = S.
Suppose A C P; by Characterization 3.8, A x B is a concept of L(R). As
A # () and R has no lines of zeroes, then A x B is not the bottom element
of L(R) and has thus at least one predecessor. As A is a module, for all
z,y € A, N(z) = N(y). As a consequence, the only way of extending
B in order to have a predecessor of A x B in the lattice is to remove
all vertices of A, which can only result in () x O, the bottom element of
L(R). Thus, A x B is an atom of L(R).

If A C O, we prove dually that B x A is a co-atom of L(R).

4 Selecting a sublattice by saturating a minimal separator

Computing a minimal triangulation of a graph is an important problem, with
many applications.

Recent work has shown that minimal separators could be used to compute a
minimal triangulation, essentially by repeatedly saturating a minimal separa-
tor of the graph (|25,32,2]). The process of saturating one minimal separator
causes a number of other minimal separators to disappear from the graph; this
process was first introduced by [25], and is extensively studied in [32] and [31]
and its mechanism is described and used in [7].

In this Section, we will examine what happens to the lattice when a minimal
separator of the underlying graph is saturated.

Definition 4.1 (/25]) Let S and T be two minimal separators of graph G; T
s satd to cross S if there are two different connected components Cy and Cy
of G(V = 8) such that TN Cy # 0 and T N Cy # (.

Theorem 4.2 (/31]) A minimal separator of a graph G is a clique separator
ioff it does not cross any other minimal separator of G.

Property 4.3 (/32]) Let G be a graph, let S be a minimal separator of G, let
Gs denote the graph obtained from G by saturating S; then T is a minimal

11



separator of Gs iff T is a minimal separator of G and T does not cross S in

G.

We will use this result on our underlying graph Gg: saturating a minimal
separator S of Gy defines a new relation R, in which for each zy edge added
to S, the corresponding element (z, y) is deleted from R. According to Property
4.3, we expect every concept of the resulting relation R’ to be a concept of the
original relation R.

Theorem 4.4 Let R be a binary relation, and G g the corresponding under-
lying co-bipartite graph. Let S be a minimal separator of Gg, representing
concept A x B in lattice L(R), let R' be the new relation obtained by saturat-
ing S. Then the following two properties hold:

(1) Concept lattice L(R') can be obtained from L(R) by removing all the
elements which are not comparable to A x B.
(2) Concept lattice L(R') is a sublattice of the original lattice L(R).

To prove this, we will need the following Lemma, which establishes the rela-
tionship between non-crossing minimal separators in a graph and comparable
elements in a lattice.

Lemma 4.5 Let R be a binary relation, let L(R) be the associated concept
lattice, and let G be the corresponding underlying co-bipartite graph. Let S
and S’ be minimal separators of Gg, let A x B and A" x B' respectively be the
concepts which S and S’ represent; then S and S' are non-crossing minimal
separators of Gr iff A x B and A’ x B' are comparable elements in L(R).

Proof: Let S and S’ be two minimal separators, respectively representing
concepts A x B and A’ x B'.

(1) Suppose S and S’ are non-crossing. By Definition 4.1, this implies w.l.o.g.
that SN A" # (. Then A’ C (AUB) and, as A’ CPand B C O, A’ C A.
Thus, A x B is a descendant of A’ x B’; these concepts are therefore
comparable.

(2) Suppose S and S’ are crossing. By Definition 4.1, SN A’ # () and S'NA #
(; then A’ ¢ Aand A € A’. As a consequence, concepts Ax B and A’ x B’
are not comparable.

Proof: (of Theorem 4.4) Let R be a relation, £(R) its concept lattice, Gg the
underlying graph, and S a minimal separator of Gy. Let R’ be the relation
obtained from R by saturating S and L(R') its concept lattice. By Property
4.3, saturating S causes to disappear from the graph exactly those minimal

12



separators which are non-crossing with S. Thus, by Lemma 4.5, concepts which
are not comparable with A x B disappear from L(R). As a result, L(R') is a
sublattice of L(R). O

Gr ¢ R o > LL(R)
minimal separator S «- - - - -- = closed set AXB |
saturate SJ/ i i select sublattice
N N
Gr >R » L (R)

Figure 5. Relationships between relation, graph and lattice while saturating a sepa-
rator.

Theorem 4.4 defines a process which enables us to restrict a binary relation
R to a sub-relation R’ C R such that £L(R') is a sublattice of £(R). This may
prove important in many applications, as arbitrarily restricting a relation will
not, in general, yield a sublattice, and can even cause the resulting lattice
to be larger than the original one; indeed, not much is known on the exact
mechanisms which govern the number of concepts defined by a given binary
relation.

Example 4.6 Let us saturate separator S = {a,d,e, f,3,4,5,6} of Ggr in
Figure 4, representing concept bec x 12. Edges a3, a6, d4, d5, ed and f3 will
be added.

Figure 6 gives the new relation R' obtained. Figure 7 gives the sublattice L(R')
obtained. Saturating S has caused concepts a x 236, ab X 23, abf x 3, d x 145,
cd X 15 and de x 14 to disappear from the lattice.

We will conclude this section by discussing the minimal triangulations of G,
as related to the minimal separator saturation process.

We will first remark that by virtue of the results in [29] and [31] on AT-free
and claw-free graphs, all the minimal triangulations of G’ are proper interval
graphs. (The reader is referred to [27], [35] and [17] for the definitions of
interval graphs and proper interval graphs).

Property 4.7 (/3]) Given an input graph G, the process of repeatedly choos-
ing a minimal separator of G which is not a clique, and saturating it, until
all minimal separators are cliques, yields a minimal triangulation of the input
graph in less than n steps. Moreover, this process characterizes the minimal
triangulations of G: each minimal triangulation H of G is characterized by
the minimal separators of H.
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a|l bl c|d|e|f al bl c|d|e]|f
1 X | X | x| X 1 X | X | X | X
2| x| x| X 2| x| x| X
3| x| x X 3 X
4 X | X 4
) X | % ) X
6| x 6
R R

Figure 6. Original relation R; new relation R’ defined by saturating minimal sepa-
rator S = {a,d,e, f,3,4,5,6}.

abcdef x o abcdef x o

‘abf X 3‘ ‘abc X 2‘ ‘bcdex l‘ ‘abc X 2‘ ‘bcdex 1‘
lab x 23 | [bc x 12| [cdx 15| |dex 14| |bc x 12 |
lax 236] [bx 123] [cx125] |dx 145] |b x 123] |c x 125]

@ x 123456 @ x 123456

L(R) L(R)

Figure 7. Original lattice £(R); lattice L(R') obtained by saturating the minimal
separator which represents concept bc x 12.

Property 4.8 Computing a minimal triangulation of Gg by repeatedly sat-
urating a non-clique minimal separator will result in a proper interval graph
Ggrr and a corresponding relation R" such that L(R") is a mazimal chain of

L(R).

Proof: This follows directly from Theorem 4.4, as the process of repeatedly
removing all concepts not comparable to a concept taken on some maximal
chain will result in this chain. O

Property 4.9 There is a one—to—one correspondence between minimal trian-
gulations of Gr and mazimal chains of L(R).
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Proof: This follows from Properties 4.7 and 4.8, as a proper interval graph is
a triangulated graph and as a minimal triangulation H = (V, E+F) of a given
graph G = (V, E) is uniquely characterized by the set of minimal separators
of H. O

Remark 4.10 A maximal chain of the concept lattice of context (P,O, R)
has less than min(|P|+ |O|) elements and can be obtained in less then n steps,
according to Property 4.7. Since each time a minimal separator is saturated the
number of concepts decreases, the process of saturating a minimal separator,
described by Theorem 4.4, can be repeated as many times as necessary, and
can always result in a polynomial-sized sublattice. This may be very useful
when the concept lattice is exponentially large, because it allows the user to
examine only a part of it.

abcdef x @

@ X 123456

Figure 8. Lattice obtained by computing a minimal triangulation of graph Gg of
Figure 3.

5 Using minimal separators to decompose a binary relation and its
lattice

In [41], Tarjan introduced the decomposition by clique separators of a graph.
This process is defined by repeatedly copying some clique separator S into
each of the components it defines. This decomposition is proved to be unique
and optimal when only clique minimal separators are used (|26]), and can be
described by the following general decomposition step:

Clique Minimal Separator Decomposition Step 5.1 Let G be a graph,
let S be a cliqgue minimal separator of G, defining components C1,Cy, ...Ck.

Replace G with G; = G(Cy; U N(C4)), G2 = G(Cy U N(Cy)),... and Gy =
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G(Cr UN(Ch))-

This decomposition has the remarkable property that it distributes the mini-
mal separators into the subgraphs it defines.

Property 5.2 (/6]) Let G be a graph, let S be a clique minimal separator
of G, let S(G) be the set of minimal separators of G. After a decomposition
step of G by S, the elements of S(G) — {S} are partitioned into the subgraphs
obtained.

In the case of co-bipartite graphs, the clique minimal separator decomposi-
tion process is considerably simplified by the fact that each minimal separator
defines only two connected components: Decomposition Step 5.1 on clique
minimal separator S, defining components A C P and B C O, would yield
subgraphs G; = Gr(AU N(A)) and Gy = Gg(B U N(B)). Since by Charac-
terization 38, N(A) = N(B) = S, G1 = GR(A U S) and G2 = GR(B U S)
Moreover, since S is a clique, the vertices of S NP are universal in graph
Gr(AUS) and according to Property 2.7, they convey no information on min-
imal separators and can be removed from the graph. The vertices of SN O
are likewise universal in Gg(B U S), and can be removed. For a co-bipartite
graph G g derived from a binary relation R, we will thus define a simplified
decomposition step, which replaces Gr with G; = Gr(A U (S N O)) and
Gy =Gr(BU(SNP)).

As a consequence of Property 5.2, computing the set of minimal separators
of the original underlying graph G can be done separately on the smaller
subgraphs defined by a decomposition step by a clique minimal separator: 7}
will be a minimal separator of G iff 73 U (SNP) is a minimal separator of Gg,
T will be a minimal separator of G iff T, U (SN ) is a minimal separator of
Gr. Thus the concepts of R can be computed separately on the sub-relations
defined. Moreover, it is clear that (G; contains all the minimal separators rep-
resenting a concept which is an ancestor of A x B, and that (G5 contains all
the minimal separators representing a concept which is a descendant of A x B.

In a co-bipartite graph, the presence of a clique minimal separator can be
tested for in linear time, and the decomposition can be computed in the same
time (|28]). However, in general, there may not be any clique minimal separa-
tor in G'g. We can combine the discussion above with the results from Section
4 and artificially saturate a non-clique minimal separator, and then go on to
decompose the graph.

One of the remarkable property of co-bipartite graphs is that the edges added
when saturating a minimal separator are not copied into any of the subgraphs
defined by the above decomposition, as edges would be added between a vertex
of SNO and a vertex of SNP. Thus the decomposition step is the same whether
or not the clique minimal separator used to decompose the graph is "natural"
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or "artificial".

We will thus define the following decomposition steps, which can use any
minimal separator, whether it is a clique or not:

Co-bipartite Graph Decomposition Step 5.3 Let G be the underlying
graph of context (P, O, R), let S be a minimal separator of Gr, defining com-
ponents A C P and B C O. Replace Gg with G; = Gr(AU (SN O)) =
GR(A U (O — B)) and G2 = GR(B U (Sﬂ P)) = GR(B U (P — A))

From Decomposition Step 5.3, we can derive a corresponding relation decom-
position.

Relation Decomposition Step 5.4 Let G be the underlying graph of con-
text (P,O, R), let L(R) be the associated concept lattice, let S be a minimal
separator of Gr, defining components A C P and B C O. Then R can be de-
composed into two sub-relations Ry = R(A, (O — B)) and Ry = R((P — A), B)
such that:

(1) a concept X XY of R is an ancestor of concept A x B in L(R) iff
X x (Y — B) is a concept of relation Ry. The corresponding sublattice of
L(R), of which A x B is the top, contains exactly the concepts, the intent
of which is a subset of A; it also contains exactly the concepts, the extent
of which will be a superset of B.

(2) a concept X XY of R is a descendant of concept A X B in L(R) iff
(X —A) XY is a concept of relation Ry. The corresponding sublattice of
L(R), of which A X B is the bottom, contains exactly the concepts, the
extent of which is a subset of B; it also contains exactly the concepts, the
intent of which will be a superset of A.

Chances are the resulting sub-relations will be much smaller than the original
one, and thus the queries on them much less costly.

This process enables us to efficiently answer the following type of query:

"If we have a set of properties X, (for example a set of symptoms in a medical
database), which sub-relation should we work on in order to define only the
concepts which contain all the properties included in X?"

To do this, we simply:

— compute the smallest concept, the intention of which contains X, and

— extract the sub-relation corresponding to the descendants of this concept.

Example 5.5 Let us use minimal separator S = {a,d, e, f,3,4,5,6} of Exam-
ple 3.9. The corresponding lattice is given in Figure 1 in Section 2. S defines
components A = {b,c} and B = {1,2}, thus representing concept bc x 12.
SNO={3,4,5,6} and SNP ={a,d,e, f}.
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A decomposition step using S will yield Gy = Gr(C1U(SNQO)) =
Gr({b,¢,3,4,5,6}) and Go = Gr(Co U (SNP)) = Gr({a,d,e, f,1,2}), as
tllustrated by Figure 9 where edges are omitted in cliques P and O. The initial
relation R and its corresponding sub-relations R, and Ry obtained are given
in Figure 10.

With a linear-time pass of G it will become clear that vertices 4 and 6 have
also become universal and can be removed. Figure 11 shows the very restricted
graph G' finally obtained. The minimal separators of G are {b,3} and {c,5},
corresponding to concept bx 3 and cx5. In the global graph, putting component
Cy ={1,2} back in will yield at no extra cost concepts b x 123 and ¢ x 125 of
the original lattice. These are precisely the predecessors of be X 12.

In Gy, vertex f has become universal, and a linear-time pass will show that ver-
tices d and e now share the same neighborhood, and can be contracted without
loss of information on the minimal separators of the graph.

The resulting graph GY is also restricted to four vertices, and is shown in
Figure 11. Its minimal separators are represented by a X 2 and de X 1, which,
once we have put Cy = {b, c} back in, defines the concepts abc x 2 and bede % 1,
which are the successors of bc x 12.

The corresponding lattice decomposition is illustrated in Figure 12.

Figure 9. Graphs G and G2 from decomposition of Example 5.5 (the internal edges
of P and O are omitted).

6 Computing the cover of an element of the lattice

We will now use the classical properties of graphs to characterize the concepts
which constitute the cover of an element of the lattice.

We will need to define the concept of domination in a graph:
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6| x 51 | X

6

Figure 10. Relations R; and Rs from decomposition of Example 5.5.

b c a de

5 3 1 2

Figure 11. The very restricted graphs G| and G, obtained after a decomposition
step by minimal separator on Gg in Example 5.5.

[abcdef x ¢ [abc x 2]  [bcde x 1
[abf x 3] abc x 2| [bcde x 1] bc x 12
[ab x 23| [bcx 12 ] [cd x 15 | [de x 14 | [bc x 12 ]
[ax 236] [bx123] [cx 125] [d x 145] [b x 123] [c x 125

@ x_ 123456 @ x_123456

Figure 12. Lattices obtained by decomposition step of Example 5.5.

Definition 6.1 A vertez x is said to be dominating (or strongly dominating)
in graph G if there is some vertex y such that N(y) C N(x). We will say that a
mazimal clique module X is dominating if there is some vertery € N(X)—X
such that Yz € X,N(y) C N(z). Conversely we will say that a verter or
mazimal cligue module is non-dominating if it is not dominating.

Property 6.2 Let G = (V, E) be a co-bipartite graph, let X C V be a mazi-
mal cligue module of G; then X is a moplex iff X is non-dominating.

Proof: Let G = (V, E) be a co-bipartite graph and X C V a maximal clique
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module of G.

(1) Suppose X is a moplex; then N(X) is a minimal separator inducing (by
Characterization 3.5) a second connected component, the neighborhood
of which is N(X); thus X is non-dominating.

(2) Suppose X is non-dominating; then ¥ =V — (N(X) U X) has the same
neighborhood as X and then N(X) is a minimal separator; thus X is a
moplex.

Property 6.3 Let Gg be the underlying graph of context (P, O, R), let X C P
be a mazimal clique module of Gg; then N(X) represents an atom, with intent
X, iff X is non-dominating in Gg.

Proof: As we previously said, we consider only relations without any line of
zeroes of or ones. Thus, we use Property 6.2 to reformulate Property 3.13. O

We can use Property 6.3 and the results from the previous section to compute
the cover of a given element A x B, by decomposing the lattice and thus
obtaining a sublattice of which A x B is the bottom element.

Theorem 6.4 A concept A" x B’ covers a concept A X B iff in Gy = G(BU

(P — A)) there is some non-dominating mazimal clique module X such that
A'=X+ A

For complexity considerations, we need to remark that a maximal clique mod-
ule X of minimum degree is non-dominating, and that finding the set of ver-
tices which dominate a given maximal clique module X can be done in linear
time by checking for universal vertices in N(X).

Our strategy for finding the set of non-dominating maximal clique modules of
G is the following:

(1) Compute in linear time all the maximal clique modules of G and contract
them.

(2) Choose a vertex z of minimum degree in the resulting graph.

(3) Compute in linear time the set of vertices which dominate z.

(4) Remove z and the vertices which dominate = from the graph and go back
to Step 2.

This requires O(m) time per non-dominated maximal clique module com-
puted.
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In Figure 3, the set of maximal clique modules is exactly the set of ver-
tices. Vertices e and f are dominating (e dominates d and f dominates both
a and b). N(a) = {b,c,d,e, f,1,4,5}, N(b) = {a,c,d,e, f,4,5,6}, N(c) =
{a,b,d,e, f,3,4,6}, and N(d) = {a,b,c,e, f,2,3,6}, which defines the atoms
of L(R) as: a X 236,b x 123, ¢ x 125 and d x 145.

7 Generating the concepts

Recent work has been done on the efficient generation of the concepts defined
by a binary relation. One may want to generate and store all the concepts
(|30]), or simply encounter each at least once, without storing them ([15]), or
one may want to compute the concepts along with their structure, i.e. the arcs
of the Hasse diagram of the lattice ([12]).

In parallel, recent work has been done to generate all the minimal separators
or all the minimal zy-separators of a graph ([40,24,8,38]).

As an illustration of the use that can be made of our new paradigm, we will
show how we can easily match the current best worst time complexities for
concept generation using graph results.

When generating and storing the concepts, the current best complexity is held
by [30], and is O(n?) per concept.

Let us use our underlying graph Gg as described in Section 3, and add two
simplicial vertices z and y, such that x is a neighbor of all vertices of P,
y of all vertices of O. It is easy to see that the set of minimal separators
of this new graph is exactly {P} U {O} U S(Gg), where S(Gg) is the set of
minimal separators of G . Using the results from [38], who claim a complexity
of O(n?) time per minimal zy-separator to generate and store them, we can
easily generate and store all the concepts of R in O(n?) time per concept,
noting that [38] claims a better space complexity than [30].

When generating the concepts without storing them, the current best-time
complexity is held by Ganter [15], and is O(|P?||O)), i.e. O(n?).

For this, we will use the results from Section 6 to recursively compute the cover
of each element in a depth-first fashion. Since the lattice is of height at most
n, such a DF'S will require only polynomial space. By the results from Section
6, each element will be generated by its predecessor in linear (0(m)) time. A
given element will be generated as many times as its number of predecessors,
which is at most |P|, as a depth-first traversal easily enables to know whether
an encountered element has already been processed. Since m < |P|.|O|, each
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element will be generated in O(|P?||O|), which matches the complexity of [15],
noting that we generated the Hasse diagram, whereas [15] does not.

Note that our more recent work ([39,9]) uses this process with an adequate data
structure maintained which enables us to obtain a better complexity of O(m)
per generated concept, plus O(nm) per maximal chain of the lattice traversed
by the recursive deapth-first algorithm and the corresponding spanning tree.

8 Conclusion

Though specific problems such as minimizing the number of times a database
is accessed remain to be translated in terms of graph separators, we have
presented a new approach to answering queries on the concept lattice of a
binary relation, which uses a rapidly growing toolbox: the theory of minimal
separation in undirected graphs.

We can expect that this approach will create a bridge between the two fields
of concept lattice theory and undirected graph theory, and yield new results
in both fields.

As noted by one of our referees, which we thank for these remarks, there is
a one-to-one correspondence between the maximal chains of the lattice (cor-
responding to Guttman scales) and the maximal sub-Ferrers relations, which
should be investigated in view of our results. It would also be interesting to
examine the relationships between concepts, minimal separators, maximal bi-
cliques and minimal hypergraph traversals, which are known to be different
facets of the same object.

Moreover, we feel that since the minimal separators of a graph seem to describe
the structure of the graph, we have contributed to show a strong semantic
aspect behind the concepts defined by a binary relation.

Several open questions arise from the issues discussed in this paper.

It is not known whether the set of non-dominant vertices can be computed in
less than linear time per vertex, but improving this would also improve the
complexity of the algorithmic process described in Section 7.

Likewise, efficiently computing the set of minimal separators which cross a
given minimal separator S would result in a better generation algorithm for
concepts.

We have illustrated the use of clique minimal separator decomposition, but
other minimal separator-preserving decompositions would directly yield de-
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compositions of a binary relation and of the associated lattice. Conversely,
other known decompositions of binary relations might lead to new hole and
anti-hole preserving graph decompositions, an important problem in the con-
text of perfect graphs.

Finally, it would be interesting to characterize the binary relations which de-
fine a polynomial number of concepts, or the graphs which have a polynomial
number of minimal separators; this might help the users of databases to main-
tain manageable binary relations.
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