Maximal sub-triangulation as pre-processing phylogenetic data
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Abstract: In order to help infer an evolutionary tree (phylogeny) from experimental data, we propose a
new method for pre-processing the corresponding dissimilarity matriz, which is related to the property that
the distance matriz of a phylogeny (called an additive matrix) describes a sandwich family of chordal
graphs. As experimental data often yield distance values which are known to be under-estimated, we
address the issue of correcting the data by increasing the distances which are incorrect. This is done by
computing, for each graph of the sandwich family, a mazimal chordal subgraph.

1 Introduction

Inferring evolutionary trees (also called phylogenies) from dissimilarity data remains one of the major
challenges in the field of computational biology. Problems like multiple sequence alignment, gene function
prediction and protein structure prediction involve phylogenetic reconstruction.

Dissimilarity matrices are obtained experimentally by considering a set of ’objects’, which in a phylo-
genetic context are taza, (but which can, for other biological problems, be genes or proteins for example),
and by measuring, using some feasible criterion, the distance between the elements of each pair of taxa.
Data are thus described as positive-valued symmetric matrices; when this matrix does indeed correspond
to a phylogeny (it is then called an additive matriz), reconstructing the tree is easy, and can be done in
polynomial time, yielding a unique tree topology ([2], [13], [23]).

Experimental results, however, are not exactly additive matrices, and the phylogeny has to be inferred
from real data. Many methods have been proposed for this (see e.g. [9], [13], [24], [26]), but they remain
costly and inaccurate, so that new approaches are still being sought.

One of the recent trends in this field of research is to examine the ordinal properties of the matrix.
Dissimilarity matrices describe a succession of thresholds, and it turns out to be interesting to examine
the structure of these thresholds, rather than only the values themselves (see [21], [24], [26]), partly
because they seem to be less sensitive to small data variations (see [11]), but also because biologists are
more concerned with reconstructing the structure (topology) of the phylogenies than by finding the exact
valuations of the edges of the phylogeny, so that it seems promising to look for structural properties.

Our approach here is to consider the family of undirected graphs defined by the dissimilarity matrix,
each graph of the family corresponding to one of the thresholds of the matrix; we call this the threshold
family of graphs defined by a dissimilarity matriz.

Huson, Nettles and Warnow in [24] use the property that if the matrix is additive, all the graphs of the
threshold family are chordal (or triangulated), and give experimental evidence that the graphs obtained
in real-world data are ”almost triangulated”.

As a means of pre-processing the experimental data, our aim here is to correct each graph of this
threshold family so that it will indeed be chordal, a process called triangulation.

The most classical way of correcting a non-chordal graph is called minimal triangulation. It is well
studied ([27, 3, 4, 7, 6]) and consists in adding an inclusion-minimal set of edges to the graph in order to
make it chordal. For a given graph with n vertices and m edges, computing such a minimal triangulation
can be done in O(nm) time.

Adding edges to a graph of a threshold family means lowering the thresholds of the corresponding edges.
Biologists, however, estimate that in the context of constructing a phylogeny from DNA sequences, the
thresholds obtained by experimentations tend to be rather too low than too high, the argument being
that the number of mutations, represented by the distance between taxa, is in fact higher than what can
be observed experimentally (see [26]).
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We have thus examined the problem of correcting a graph which fails to be chordal by removing edges
rather than adding them, thereby computing a mazimal chordal subgraph or mazimal subtriangulation of
each of the graphs of the threshold family. The maximal subtriangulation problem has been somewhat
less studied than minimal triangulation ([1, 15, 16, 17, 30]), but there exist several algorithms ([1, 16, 30])
which compute a maximal subtriangulation in O(Am) time, where A is the maximum degree in the graph.

Our contribution here is a greedy algorithm which will propose a corrected matrix which increases the
values of any edge on which an anomaly is detected. Our process adds the edges one by one, beginning
with an independent set and ending with a clique, in an order as compatible as possible with the input
matrix, maintaining throughout a chordal graph at each edge-addition step. This process defines as a side-
effect maximal subtriangulations of the graphs defined by the input matrix, but with a better complexity
than if the chordal subgraphs were computed separately for each graph of the threshold family.

Our process relies on a new characterization of the edges which can be added to a chordal graph without

loosing chordality, which in turn yields a new edge-composition scheme on edges which characterizes
chordal graphs.
The paper is organized as follows: we give some previous results and definitions in Section 2; in Section
3, we present and study the threshold family of graphs defined by an additive matrix, and define an edge-
addition construction scheme for the class of chordal graphs; Section 4 contains our proposed algorithm;
in Section 5, we give some experimental insights then go on to conclude with some open questions and
perspectives.

2 Preliminaries

We will first give some definitions and properties which will be useful in the rest of the paper.

2.1 Additive matrices

A dissimilarity on a finite set X is a function 6: X? — IR™ such that Vz,y € X, 6(z,y) = 6(y,z). A
dissimilarity is represented by a pairwise comparison symmetric matrix. A distance is a dissimilarity
such that Vz,y € X, §(z,y)=0 <= z=y and Vz,y,z € X, §(z,y) + 6(y,2) > 6(z, 2).

A phylogeny, or evolutionary tree, is an unrooted binary tree with all edges weighted with positive
values. We will denote by L the set of leaves representing the set of taxa. Figure 1 gives a simple example
of such a tree.

For a,b € L, we will denote by d(a,b) the length of the ab-path from a to b in the phylogeny, which
gives the evolutionary distance between a and b. This distance is called an additive distance and the
associated matrix on £ x £ is called an additive matrix. Note that an additive matrix is a special kind
of dissimilarity matrix.

Figure 1: A phylogeny T

Additive matrices are well-studied and the following property, called the Quadrangular Inequality, char-
acterizes them:

Characterization 2.1 ([2]) A distance matriz M on o set of taza is additive iff for any quadruple
{a,b,¢,d} of taza, from the 3 sums d(a,b) + d(c,d), d(a,c) + d(b,d) and d(a,d) + d(b,c), the two largest
are equal.



The set of values of a dissimilarity matrix M can be ordered from 0 (as M|z, 2]=0) to the maximal value.
This defines a number of different thresholds: 0, 1, ..., k, in increasing order. An ordinal matrix of
a dissimilarity matrix is thus defined as the matrix obtained by replacing each dissimilarity value by its
threshold. We will denote by 6 the function giving the threshold rank corresponding to a dissimilarity.

Example 2.2 The phylogeny from Figure 1 yields the following dissimilarity and ordinal matrices:

M|a|b| c d e Wil la|b|lc|d]|e

a |0]6]12 |12 | 16 a |0|1]|4|4]|5

b 0112 |12 | 16 b 0|4 |4]|5

(¢ 0 6 | 10 C 0|13

d 0 8 d 0|2

The dissimilarity matriz M of T The ordinal matriz W of T

Note that M is an additive matrizx.
The corresponding 6 thresholds are the following: 6(0) =0, 8(6) =1, 6(8) =2, §(10) =3, 6(12) =4,
6(16) =5. Dissimilarity values are: 6=1(0) = 0, 671(1) = 6, 6~1(2) = 8, §=1(3) = 10, 671 (4) = 12,

6-1(5) = 16.

2.2 Chordal graphs and triangulations

A graph G = (V, E) is said to be chordal or triangulated if it contains no chordless cycle on more than
3 vertices. We will need the following tree-oriented characterization for chordal graphs, due independently
to Walter, Buneman and Gavril:

Characterization 2.3 ([29], [14], [19]) A graph is chordal iff it is the intersection graph of a family of
subtrees of a tree.

Graph inclusion: If G = (V,E) is a graph and G' = (V, E') is another graph on the same vertex set,
we will write G CG' iff EC E' and G C G' iff E C E' (C denotes strict inclusion).

In their famous paper, Rose Tarjan and Lueker gave the following definition of minimal triangulation:

Definition 2.4 ([27]) If G = (V, E) is a non-chordal graph, o chordal graph H = (V,E + F) is said to
be ¢ minimal triangulation of G if VF' C F, graph (V,E + F') fails to be chordal.

In the same paper, they proved the fundamental result that only one edge needs to be removed and the
resulting graph tested:

Theorem 2.5 (/27]) Let G = (V, E) be a graph, let H = (V,E + F) be a chordal graph; H is a minimal
triangulation of G iff Vf € F, graph (V,(E + (F \ {f}))) fails to be chordal.

This result relies on the following very important Lemma from the same paper, which ensures that, given
two chordal graphs which are mutually inclusive, there is an ordering on the edges which need to be
added to the smaller graph which will maintain chordality at each edge-addition step.

Lemma 2.6 (/27]) Let G1 = (V, E1) be a chordal graph, let Go = (V, Es) be a chordal graph such that
G1 C Go. Then 3f € B3\ Ey such that G' = (V, Ex \ {f}) is chordal.

We would like to point out that the property described by Lemma 2.6 is far from trivial; it fails to hold
for hole-free graphs (graphs with no chordless cycle with length strictly greater than 4), as illustrated by
the counterexample below, and it is not known whether it holds for weakly chordal graphs (graphs with
no hole, and no hole in the complement).

Counterexample 2.7 Graphs G; and G5 in figure 2 are hole-free graphs. Gy can be obtained from G
by adding edges ac and df , but G1 + {ac} and G1 + {df} are not hole-free graphs.

Maximal subtriangulation was to the best of our knowledge introduced in 1983 by Erdos and Laskar
([17]) in view of removing a minimum number of edges in order to make a graph chordal. Maximal
subtriangulation is defined in a fashion similar to minimal triangulation:

Definition 2.8 Let G = (V, E) be a non-chordal graph, let H = (V,E\ F) be a chordal graph. We will
say that H is a maximal sub-triangulation of G if VF' C F,(V,(E \ F) + F") fails to be chordal.
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Figure 2: Graphs of Example 2.7

3 Maintaining a family of chordal graphs

3.1 The threshold family of graphs defined by a dissimilarity matrix

We will use the ordinal matrix associated with a dissimilarity matrix to define the corresponding threshold
family of graphs:

Definition 3.1 Let A be a set of taxa with dissimilarity matriz M ; let W be the corresponding ordinal
matriz, on thresholds 0, 1, ..., k. We will define a family of graphs Gy C G; C ... C Gy, called the
threshold family of graphs associated with W (and thus with M), with G; = (V, E;),V = A, and
ab € E; iff Wyla,b] <1i.

Remark 3.2 The threshold family of graphs defined above should not be confused with threshold graphs,
which are defined in correlation with integer programming; threshold graphs are characterized as being
chordal, with a chordal complement, and Ps-free (see[20] and [12]), which is definitely not the general
case for the graphs of a threshold family as defined by Definition 3.1.

Note that Go is an independent set (a graph with no edges) and that Gy is a clique (a graph with all
possible edges).

The threshold matrix W induces on the set of edges V' x V' a preorder relation R: abR cd iff W]a, b] <
Wie,d]. R defines an ordered partition of the edges of Gy; each class F; of edges is defined by F; =
E;— E;_; = {zy|W][z,y] =i}. Graph G; is obtained from graph G;_1 by adding set of edges F;. R
defines a total ordering on theses classes, with F; < F} iff i <j.

Example 3.3 Figure 3 illustrates the family of non-trivial graphs constructed from the matriz of Example
2.2.
Ordered partition on the edges: {ab,cd} < {de} < {ce} < {ac,ad,bc,bd} < {ae,be}

a b a b a b a b
*———o *——o *———=o
d c d\ c dv c d c
ee e e e
Gy Gy Gs Gy

Figure 3: Graphs G; C Gy C G3 C G4 representing matrix of Example 2.2. Gy is an independent set
and G5 is a clique.

Property 3.4 If M is an additive matriz then the threshold family of graphs defined by M is a family
of chordal graphs.

Proof: Let T be the phylogeny associated with an additive matrix M, let G; be the graph corresponding
to threshold i € [0..k]. It is easy to add extra internal nodes to T in order to obtain a tree T' where there
is a node at mid-distance between any pair {a, b} of vertices. Let us now consider the family of subtrees
of T' defined by: for each leaf z, T is the subtree containing all nodes at distance 8 1(1)/2 or less from
x; G; is the interrsection graph of this family. By virtue of Characterization 2.3, G; is chordal. ¢



The converse of Property 3.4 fails to be true: there are ordinal matrices which represent a chordal
threshold family of graphs, but for which there is no corresponding additive matrix.

Counterexample 3.5 An ordinal matriz W which can be associated with no dissimilarity matriz:

Wil la|b|lc|d
a |0 3]2]|1
b 044
c 01

W is associated with a threshold family of chordal graphs, but this matriz is the ordinal matriz of no
additive matriz: for any dissimilarity 6 of which W is the ordinal matriz, we have 6(a,c) + d(b,d) =
6=1(2) + 6-1(4), but 8(a,b) + d(c,d) = 671(3) + 671(1) and d(a,d) + d(b,c) = 071(1) + 671 (4), so
d(a,c) +d(b,d) is strictly greater then the other two sums, which contradicts the Quadrangular Inequality
2.1.

3.2 Preconditionning matrices

Experimental results show that not only do the dissimilarity matrices biologists have to work with fail to
be additive, but the corresponding graphs very often fail to be chordal.

As we have stated in our introduction, our goal is to precondition a matrix into describing a family
of chordal graphs, while dealing with threshold values which are too low. As a result of Counterexample
3.5, forcing a threshold family into a chordal family will not in general be sufficient to ensure that the
matrix becomes additive; however, it may well be an important first step in error recovery.

Example 3.6 Modified dissimilarity matrix of Example 2.2, with "incorrect” values for ad and be, which
have been lowered from 12 to 8. This describes a family (H;) of graphs. Hs and Hj fail to be chordal.

a b a b
a|lb]| c d e
a|0|6|12] 8 | 16 d c d c
b|/|0] 8 |12 ] 16
cl|/1/|0O 6 | 10 ¢ €
d|/ 1/ / 0 8
Ha Hs

3.3 An edge-addition composition scheme for chordal graphs

In order to compute a threshold family of graphs which are chordal and such that each graph G} of
the new family is a subgraph of the corresponding original graph G;, we will construct clique G}, from
independent set Gy by adding at each step an inclusion-maximal set of edges which maintains chordality.

The problem of maintaining a chordal graph while adding edges has been examined by Ibarra ([25]),
who has obtained good results on the queries as to whether inserting or deleting an edge preserves a
chordal graph. He uses clique trees (see [10] for a solid introduction of this concept) as an intermediate
representation, and uses his work as an illustration of the power of this representation of a chordal graph.
He derives a characterization of the edges which can be inserted or deleted, expressed in terms of clique
trees.

We will propose yet a different approach, for which we will need the notion of 2-pair, defined by
Hayward, Hoang and Maffray to characterize weakly chordal graphs.

Definition 3.7 ([22]) A pair {a,b} of non-adjacent vertices is called a 2-pair iff every chordless path
from a to b is of length exactly 2.

Theorem 3.8 Let G1 be a chordal graph, let {a,b} be a pair of non-adjacent vertices of G1, let Ga be
the graph obtained from G1 by adding edge ab; then G is chordal iff {a,b} is a 2-pair of G .

Proof: Let G be a chordal graph, let {a,b} be a pair of non-adjacent vertices of Gy, let G5 be the
graph obtained from G; by adding edge ab, let = axixs...2;b be a longest chordless path from a to b
in G1. In Gs, ax1Ts...x;ba will be a chordless path on more than 3 vertices iff u is of length greater than
2, that is iff {a, b} fails to be a 2-pair of G;. <



An additional property which is vital to our problem is ensuring that we are able to move from one graph
of the threshold family to the next.

Property 3.9 Let Gy be a chordal graph, let G be a chordal graph such that Gy C G3. Then G2 can be
obtained from G1 by repeatedly adding an edge between the two vertices forming a 2-pair.

Proof:

Let G1 be a chordal graph, let G2 be a chordal graph such that G; C G2. By Lemma 2.6, Jab € E» \ E;
such that (V, E» \ {ab}) is chordal. By Theorem 3.8, {a, b} is a 2-pair of G2 \ {ab}. If we repeat this until
we obtain graph G, we will have constructed (in reverse) a 2-pair edge addition ordering which enables
us to construct Gs from G;. ¢

We use Theorem 3.8 to propose the following composition scheme for chordal graphs, which starts with
an independent set and constructs the desired chordal graph by an edge-addition process. This is well-
adapted to our problem, as we want to start with an independent set, scan a succession of mutually
inclusive chordal graphs, and end with a clique, which is also chordal.

Composition Scheme 3.10 A graph on n vertices is chordal iff it can be constructed by starting with
an independent set on n vertices, and by adding at each step an edge between the two vertices forming a
2-pair.

Remark 3.11 Classical composition schemes for chordal graphs are vertex-addition schemes, such as
starting with a clique and adding a simplicial vertex at each step. Very recent work by Berry, Heggernes
and Villander ([6]) gives a much more general process for adding a vertex v to a chordal graph, by
characterizing the edges incident to v which must be added along with an edge vw in order to maintain
chordality.

4 An additive data pre-processing algorithm

4.1 Algorithmic strategy

We now propose an algorithm based on Composition Scheme 3.10, which uses as input a dissimilarity
matrix M and outputs a dissimilarity matrix M’ defining a threshold family of chordal graphs, and which
raises all the thresholds it modifies.

Our algorithm starts with an independent set of vertices (graph Go), and at each step ¢ will construct
graph G; from graph G;_ ;1 by adding as many edges as possible. The algorithm at step ¢ repeatedly
chooses, from a set of candidate pairs, a pair of vertices which allows to maintain a chordal graph.

At the beginning of step 4, a candidate pair is defined as any pair {a,b} such that M[a,b] < 671(i)
and ab is not an edge of G;_;.

In order to remain as close as possible to the original matrix, we will give priority to the candidate
pairs which correspond to the smallest threshold. We will implement this by using a FIFO queue; at each
step, i, the new candidate pairs are added to the queue, and the algorithm then repeatedly chooses the
first pair of the queue which is a 2-pair of the current graph, and adds it to the current graph G; under
construction.

By Property 3.9, at the end of the algorithm, the FIFO queue is empty and every edge has been given
a threshold in the corrected matrix M’ obtained.

4.2 Algorithm

Algorithm ADD-SUB-TRI
Input: A dissimilarity matrix M on n taxa, with threshold 0, ..., k.
Output: An dissimilarity matrix M’, such that every graph in the threshold family is chordal.
Initialization:
Gy is an independent set on n vertices;
Create an empty FIFO queue Q;
begin
For i=1 to k—1 do
Gi < Gi-1;
Compute the set F; of pairs {a, b} such that MJa,b] = 671 (i);



Add F; to Q;
Repeat
Scan @) and remove the first pair ab which is a 2-pair;
Add edge ab to graph Gj;
Mla,b] + 0~ 1(1);
Until @ contains no 2-pair of Gj;
Give all remaining edges in @ value 6 1(k) in M’;
Add all remaining edges in @) to Gi_1 to form Gy, a clique on n vertices.
end

Example 4.1 On the "incorrect” matriz given in Example 3.6, at step 2, adding edge bc after adding
edge ad would induce a 4-cycle abed . We will add edge bc at step 4, after edge bd, thus raising the value
of be from 8 back to its "normal” value, 12. Note that edge ad has not been corrected.

As a consequence of Composition Scheme 3.10, Algorithm ADD-SUB-TRI computes a threshold family
of graphs of which each member is a maximal sub-triangulation of the corresponding graph of the original
matrix.

4.3 Complexity Analysis

In [28], Spinrad and Sritharan propose an algorithm which repeatedly adds a 2-pair to the graph; they
use a data structure which maintains the ”2-pair structure” of the graph, which costs O(n) to update for
each edge addition. As there are O(n) edges to process, using this 2-pair structure, our global complexity
is thus O(n*).

Note that if we computed a maximal subtriangulation in O(Am) time for each of the O(n?) graphs of
the threshold family, this would cost O(n®).

5 A few experimental results

We have implemented Algorithm ADD-SUB-TRI and run some preliminary tests.

We first ran it on real data to measure how “distant” a matrix obtained experimentally can be from
a triangulated distance matrix (a matrix associated to a family of chordal graphs). A set of 5 matrices,
ranging from size 11 to 57 (quite current sizes for phylogeny reconstruction) and dealing with plants
and bacteria, presents a percentage of triangulated graphs varying widely, from 4% to 96%. We ran
ADD-SUB-TRI on these, and used existing reconstructing algorithms on both the initial matrix and the
output matrix; we found no significant difference between the two results, only a slightly better concensus
in two cases.

We then started testing ADD-SUB-TRI on artificial data.

Our experimental protocol is the following : we begin by randomly generating an additive matrix A,
then by randomly generating from A a biased matrix B obtained by decreasing some of the dissimilarity
values and by varying the bias; finally, we run Algorithm ADD-SUB-TRI on B, resulting in matrix C,
and we use various metrical and topological criteria, such as those described in [18], to evaluate whether
C is nearer to A then B is.

This was run on a hundred matrices of size 20. The results, described in [8], show that this algorithm
is indeed promising as a pre-processing technique for improving phylogenetic data: in roughly one third
of the cases encountered in our simulations, the reconstruction was better using improved matrix C
than input matrix B using standard phylogenetic reconstruction algorithm; in all remaining cases, the
reconstruction was the same.

Because of these promising preliminary results, we aim to pursue experimentation on a larger scale
with artificial data, and also to examine more real data.

6 Conclusion, perspectives and open questions

Regarding the complexity of Algorithm ADD-SUB-TRI as presented in this paper, we use data structures
from [28], which deals with the problem of maintaining a 2-pair structure in an arbitrary graph, whereas
we deal with chordal graphs only. We believe that for chordal graphs this complexity should be improved,
especially so since in a chordal graph there are many 2-pairs which are not disrupted by an edge-addition,
so that it may not be necessary to update the 2-pair structure at every edge-addition step.



We also feel that in many biological data preprocessing problems, such as those dealing with biochip
data, it may be interesting to maintain a chordal graph, but not necessarily by systematically lowering
existing threshold; it may be interesting to use the process described in [6] to allow the user to choose at
each step whether to lower or to raise the thresholds, depending on how many modifications this causes.
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