Maintaining Class Membership Information

Anne Berry* Alain Sigayret*

7th June 2002

Abstract

Galois lattices (or concept lattices), which are lattices built
on a binary relation, are now used in many fields, such as Data
Mining and hierarchy organization, but may be of exponential
size. In this paper, we propose a decomposition of a Galois
sub-hierarchy which is of small size but contains useful inher-
itance information. We show how to efficiently maintain this
information when an element is added to or removed from the
relation, using a dynamic domination table which describes
the underlying graph with which we encode the lattice.

1 Introduction

Galois lattices (also called concept lattices), are an emerging tool in research
areas such as Data Mining, Database Managing and Object Hierarchy Or-
ganization (see [9], [15], [16], [19], [20], [21]).

A lattice has the advantage over a tree that it allows a much more
complex structure, as every pair of elements not only has a greatest lower
bound, but also has a lowest upper bound. In particular, this structure has
been shown to be well adapted to representing multiple inheritance (a car
can be both a wheeled vehicle and water-faring).

Concept lattices, moreover, are built from a binary relation, classically
between a set P of properties and a set O of objects, which completely
represents the information which is to be analysed. The elements of the lat-
tice describe all possible maximal associations of the properties and objects.
They are both a powerful investigation tool for Data Mining applications,

*LIMOS UMR CNRS 6158, Ensemble Scientifique des Cézeaux, Universit Blaise Pascal,
63170 Aubiere, France. E-mail: berry@isima.fr, sigayret@isima.fr

and a complete underlying structuration for relationships, which makes them
a good basis for extracting an organization into hierarchies.

The main drawback of such a lattice is that it may be exponential in
size compared to the initial binary relation it is constructed from. Though
it is known that, when one can give an upper bound on the number of
properties for an object, the lattice is of polynomial size (see [8], [10], [11]),
there is no known general characterization for relations which will define
only a polynomial number of concepts. As a result, users of concept lattices
are left with few options:

e use only a part of the lattice, by defining a sub-lattice or applying
zooming techniques;

e use and maintain a relation which belongs to a class which is known
to define only a polynomial number of concepts;

e use a polynomial representation of the lattice to extract the most per-
tinent information.

In this paper, we will investigate the third possibility, by using both an
underlying polynomial-sized graph which we use to encode the lattice (see
[4]) and by restricting the information to a variant of a Galois sub-hierarchy.

Moreover, we address the issue of maintaining such information when an
element is added to or deleted from the relation, without re-computing the
entire sub-hierarchy.

2 Concept Lattices and Galois Sub-hierarchies

Given a finite set P of ”properties” (which may be attributes, methods,
features, etc., and which we will denote by lowercase letters) and a finite set
O of "objects” (which may be tuples, individuals, classes, etc., and which
we will denote by numbers), we consider a binary relation R as a proper
subset of the Cartesian product P x O; we will refer to the triple (P, O, R)
as a context.

Given a context C = (P,O, R), a concept or closed set of C, also
called a maximal rectangle of R, is a sub-product A x B C R such that
Ve O—B,3ye€ A|(y,z) € R,and Ve € P — A,Jy € B|(xz,y) € R. Ais
called the intent of the concept, B is called the extent.

The set of concepts thus defined form a lattice when ordered by inclusion
on the intents, or, dually, by inclusion on the extents, called a concept
lattice or Galois lattice.

O= o x 123456 O

ah x 236 b x 123 c x125 d x 145 {ah,6} {b, g} {c, 2} {d, &}
abgh x 23 bc x 12 cd x15 de x 14 {9.5} {a .2} {75} {e4}
abfgh x 3 abegh x 2 bede x 1 {f,3} {2 .2} {g.1

0= abcdefgh x & O

Figure 1: Concept lattice £L(R) and corresponding simplified lattice of rela-
tion R of Example 2.1.

Example 2.1 P = {a,b,c,d,e, f}, O ={1,2,3,4,5,6}. Binary relation R:

a|lblc|dle|flg]|h
1 X X | X
2| x| x| X X | X
3| x| x X | X | X
4 X | X
i) X | X
6| X X

The associated concept lattice L(R) is shown in Figure 1.

Because of the inheritance rules associated with this lattice, the labels
can be simplified into mentioning only properties or objects which occur
for the first time, in a top-bottom fashion for properties, in a bottom-top
fashion for objects.

Example 2.2 The simplified concept lattice obtained from L(R) associated
with relation R of Example 2.1 is shown in Figure 1.

When the number of elements of the lattice is exponential, several au-
thors ([9], [7], [15]) have found it useful to further simplify this lattice into
a Galois sub-hierarchy, by defining a partially ordered set obtained by
removing from this simplified lattice trivial nodes such as empty set pairs
{0,0}, and usually the top and bottom elements.

Example 2.3 Figure 2 shows the Galois sub-hierarchy obtained from the
simplified lattice of Example 2.2. Note that this partial ordering does mot

{ah,6} {b 2} {c, 8} {d, &}
{9.5} {25 {ed

{f,3} {9.2} {213

Figure 2: Galois sub-hierarchy obtained from the simplified lattice of Ex-
ample 2.2.

define a lattice, as elements {0,2} and {0, 1} fail to have a unique nearest
common descendent.

3 Decomposing a Galois Sub-hierarchy Using Graph
Domination

Our approach to encoding a Galois lattice (see [4]) is, surprisingly enough, to
use an underlying graph G g, constructed on the complement of the relation,
defined, for a given context (P,O, R) as Ggr = (V, E), with V = PU O, and
with edges defined as:

1. internal edges which make P and O into cliques (if z,y € P then
zy € E and if z,y € O then zy € E).

2. external edges: if x € P and y € O then zy € E iff (z,y) ¢ R.

Since P and O are trivially cliques, we will not represent their internal
edges, nor will these have any influence on the complexity evaluations we
discuss, as they need not be traversed. We will denote by N (z) the external
neighborhood of vertex z: if z € P,N*t(z) = {y € O|(z,y) € R}, and if
z € O,NT(z) = {y € Pl(y,z) € R}. We will also use N*(z) to denote
O — N*t(z) for z € P, N*(y) to denote P — NT(y) for z € O. We use
n=|P|+|0|, and m = |P| x |O| — |R).

Note that, though not much is known on the size of the concept lattice
defined by a given relation, in general the lattice tends to be exponential in
size when it is dense (i.e. when it has many crosses); in this case, for our
graph, m will be of the order of n instead of n2.

The reason we define this graph is that we have the remarkable property
that a vertex set S of G is a minimal separator of G, separating connected
component A from connected component B if, and only if A X B is a concept

oQ "0 Q0 oY

Figure 3: Graph Gg coding the relation from Example 2.1 and the corre-
sponding domination relation.

defined by relation R. Now this may seem a little far-fetched, but a steady
output of work done in the past decade has yielded many results on minimal
separation, and in [4] we show this to be an efficient tool for concept lattice
investigation and concept generation. It is interesting to note, however, that
quite regularly work appears on the relationship between graphs and lattices
(see [2], [13], [14], [17], [18]).

One of the related graph notions which turns out to be of primary im-
portance for the study of concept lattices is that of domination: a vertex
z is said to dominate another vertex y if N*(y) C N*(z).

The domination relation defines a partial pre-ordering on V', which we
decompose into the property domination relation and the object dom-
ination relation.

Example 3.1 The relation of Example 2.1 yields the graph given in Figure
3.
N*(a) = {1,4,5}, N*(b) = {4,5,6}, N+(c) = {3,4,6}, N+(d) = {2,3,6},
N*(e) = {2,3,5,6}, NT(f) ={1,2,4,5,6}, N*(g9) = {1,4,5,6}, NT(h) =
N*(a), N*(1) = {a, f,g,h}, N*(2) = {d,e, f}, N*(3) = {c,d,e}, N*(4) =
{a'abacafagah}7 N+(5) = {aaba ¢, faga h’}7 N+(6) = {bacadaeafag}'

a and h share the same neighborhood and behave as a single vertex ah.
f dominates g, g dominates a and b; by transitivity, this implies that f also
dominates a and b. c is neither dominated nor dominating.

Figure 3 gives the property domination relation and the object domina-
tion relation.

It is clear from Example 3.1 that this domination relation is strongly
related to the Galois sub-hierarchy shown in Figure 2.

In order to precisely describe this relationship, we introduce a decompo-
sition of the Galois sub-hierarchy into the sub-hierarchy of intents and the
sub-hierarchy of extents, by using only the left or right parts of the labels

ah b c d 6)4 z z
f)] z 3 2 1
Figure 4: Sub-hierarchies of intents and of extents derived from Figure 2.

of the sub-hierarchy. If, consistently with the original definition, we then
remove the empty set nodes, we find the domination relation.

Example 3.2 Figure 4 gives the sub-hierarchies of intents and of extents
derived from Figure 2.

Based on these considerations, we give the following property:

Property 3.3 The property domination relation of Gg is equivalent to the
Galois sub-hierarchy taken on the intents, from which all empty set nodes
have been remowved, and the object domination relation of Ggr is equivalent
to the Galois sub-hierarchy taken on the extents, from which all empty set
nodes have been removed.

4 Computing and Updating the Domination In-
formation

Computing the domination relation of a graph costs roughly O(nm) time.
In this section, we will introduce a data structure which will enable us to
update a relation by adding or deleting elements, with a cost of only O(n)
per update.

We will restrict our description of our process to computing the property
domination relation; of course, the same process can be applied dually to
computing the object domination relation.

4.1 Computing and Querying the Domination Table

In order to maintain property domination information, we construct a dom-
ination table, which, for each pair (z,y) of properties, lists the objects, the
presence of which prevents z from dominating ¥y, or from having a neigh-
borhood which is the same as that of y. This just means that if for object
i, (z,1) € R and (y,4) € R, i will appear in the list for (z,y).

Example 4.1 Property domination table corresponding to relation R from

Ezample 2.1:

a b c d e f g h
a 0 {1} {1,5} | {1,4,5} [{1,4}] @ 0 0
b {6} 0 {5} {4,5) | {4 | 0 0 {6}
c | {36} | {3} 0 {4} {4y | {3} {3+ | {3.6}
d | {2,3,6} | {2,3} | {2} 0 0 | {3} | {2,3} | {2,3,6}
e |{2,3,6} | {2,3} | {2,5} {5} 0 {3} | {2,3} | {2,3,6}
f 1 {2,6} | {1,2}]{1,2,5} | {1,4,5} | {1,4} | 0 {2} {2,6}
g {6} {1} | {1,5} |{1,4,5} | {1,4} | 0 0 {6}
h 0 {1} {1,5} | {1,4,5} | {1,4} | 0 0 0

This table is to be read as (x,y) pairs, each containing the information on
z dominating y, where = labels a column and y a row.

The algorithmic process for constructing the property domination table is
simple:

For each x € P
For each y € P
For each z € O
If (z,2) € R and (y,z) ¢ R then add z to list (z,y);

The process for building the object domination table is symmetric, and
obtained from the previous one by exchanging P and O.

The global size of the tables is of O(nm); as each entry can be computed
in constant time using relation R, the total time cost for computing the prop-
erty domination table and the object domination table will be in O(nm).

From the table, we can deduce that:
e a will dominate b if object 6 is deleted.

e ¢ dominates d since (e,d) = (. The property domination relation
shown in Figure 3 can easily be globally computed by examining this
domination for each property.

e Nt(a) = NT(h), since a dominates h and h dominates a; note how
columns a and h are identical.

e Nt(g) = N*(a) UNT(b), as column g is the intersection of columns
a and b in the domination table. This means that relation R fails to
be a reduced relation: g appears in the intent of a concept of L(R) iff
both a and b appear too.

Object domination table corresponding to relation R from Ezample 2.1.

1 2 3 4 5 6
0 {a,g,h} {a, f,g,h}) 0 {a,h}
{d, e} 0 {f} {d,e} | {d} 0
{c,d, e} {c}) {d,e} | {c,d} 0
{b,c} {a,b,¢,g,h} | {a,b, f,g,h} 0 {c} | {a,h}
{b, e} {a,b,9,h} | {a,b,f,g,h} | {e} 0 | {ah}
{b,c,d,e} | {b,c,g,h} {b, f,g} {d,e} | {c,d} 1)

| P Lo~

Computing the intents and extents of the sub-hierarchy elements
from the domination table.

For a given property, for example f, find from the table which properties f
dominates, that is which have () in the f column; this query yields a,b, f, g, h;
abfgh will be the intent; then compute O — NT(f) = {3}, which yields the
extent of the element; we thus obtain element abfgh x 3 as element of L(R),
in a complexity proportional to the size of the result.

Computing the simplified Galois sub-hierarchy from the domina-
tion table.
When desirable, it is easy to reconstruct it from the property domination
table:

For a given property or object, one can also deduce from the table the
corresponding element of

When the entire Galois sub-hierarchy needs to be re-constructed, one
can use the following
1. For each property x € P

X « list of properties which z dominates; // L(x) includes z.

If x shares its neighborhood with other properties, forming set M (z),
then Add {z,0} to the list of elements of the simplified Galois sub-
hierarchy;

Y «+ N+ (z);

Add X to the list of already computed intents, keeping a pointer on

{z,0};

2. For each object y € O
Y «+ list of objects which y dominates;
If y shares its neighborhood with other objectss, forming set M (y),
then
X « N*t(y);
If intent X has already been computed then
X points towards element {z,}};

Replace element {z,0} with element {z,y};

This can be accomplished in roughly O(n?) time, though this complexity
could be streamlined using the maximal number of crosses in a line.

Example 4.2

a shares its neighborhood with h and dominates no other property; N+ (a) =
{2,3,6}; corresponding element of the Galois lattice: ah x 236; temporarily
store (ah,0) as an element of the simplified sub-hierarchy.

b dominates no other property: N*(b) = {1,2,3}; corresponding element
of the Galois lattice: b x 123; tentatively store (b,0) as an element of the
simplified sub-hierarchy.

¢ dominates no other property: N*(c) = {1,2,5}; corresponding element
of the Galois lattice: ¢ x 125; tentatively store (c,0) as an element of the
simplified sub-hierarchy.

d dominates no other property: N+(d) = {1,4,5}; corresponding element
of the Galois lattice: d x 145; tentatively store (d,D) as an element of the
simplified sub-hierarchy.

e dominates d; N*t(e) = {1,4}; corresponding element of the Galois
lattice: de x 14; tentatively store (e,0) as an element of the simplified sub-
hierarchy.

f dominates a,b, f,g,h; Nt(f) = {3}; corresponding element of the Ga-
lois lattice: abfgh x 3; tentatively store (f,0) as an element of the simplified
sub-hierarchy.

g dominates a,b,g,h; Nt(g) = {2,3}; corresponding element of the Ga-
lois lattice: abgh x 23; tentatively store (g,0) as an element of the simplified
sub-hierarchy.

h has already been processed as sharing its neighborhood with a;

1 dominates no other object: N*+(1) = {b,c,d,e}; corresponding element
of the Galois lattice: bede x 1; store (0,1) as an element of the simplified
sub-hierarchy.

2 dominates no other object: N+(2) = {a,b,c,g,h}; corresponding el-
ement of the Galois lattice: abcgh x 2; store (0,2) as an element of the

simplified sub-hierarchy.

3 dominates no other object: N*(3) = {a,b, f,g,h}; corresponding ele-
ment of the Galois lattice: abfgh x 3; abfgh is an already computed intent,
which points towards (f,0); replace (f,0) with (f,3) as an element of the
simplified sub-hierarchy.

4 dominates 1; Nt(4) = {d,e}; corresponding element of the Galois
lattice: de x 14; de is an already computed intent, which points towards
(e,0); replace (e, D) with (e,4) as an element of the simplified sub-hierarchy.

5 dominates 1; Nt(5) = {c,d}; corresponding element of the Galois
lattice: ed x 15; store (0,5) as an element of the simplified sub-hierarchy.

6 dominates 2 and 3 ; Nt(6) = {a,h}; corresponding element of the
Galois lattice: ah x 236; ah is an already computed intent, which points
towards (ah,(); replace (ah,®) with (ah,6) as an element of the simplified
sub-hierarchy.

Note how exactly all the elements of the the simplified sub-hierarchy have

been computed.

4.2 Updating the Domination Table

1. When adding an element (z, z) to relation R, withz € P and z € O,
which means adding a cross in R at location (z,z), or, equivalently,
removing edge xz from the corresponding coding graph Gg:

e for each "non-cross” y of line z in R (i.e. (y,2) ¢ R), add z to
list (z,y);

e for each "cross” y of line z in R (i.e. (y,2) € R), delete z from
list (y,z);

2. When deleting an element (z, z) from relation R, z € P,z € O:

e for each "non-cross” y of line z in R (i.e. (y,2z) ¢ R), delete z
from list (z,y);

e for each "cross” y of line z in R (i.e. (y,2) € R), add z to list
(y,);

Updating the table will cost time O(|P]).

Example 4.3 Let us add element (b,5) to relation R of Ezample 2.1.

New relation R' obtained:

10

a | blc|d|e g | h
1 X | X | X | X
21 x| x| x X | X
3| x| x X | X
4 X | X
) X | X | X
6| X X

Line 5 contains non-crosses a, e, f,g, h and crosses c¢,d. § must be added
to the lists of (b,a), (b,e), (b, f), (b,g) and (b,h), and deleted from the lists
of (¢,b) and (d,b).

New domination table obtained:

a b c d e f g h
a 0 {1, 5} {1,5} | {1,4,5} | {1,4} | @ 0 0
b {6} 0 {Ar | {48} | {4 | 0 0 {6}
c | {3,6} {3} 0 {4} {4t {3+ | {3+ | {36}
d |{2,3,6} | {2,3} {2}] 0 {3} 1 {2,3} | {2,3,6}
e | {2,3,6} | {2,3,5} | {2,5} {5} 0 {3} 1 {2,3} | {2,3,6}
f | {26} | {1,2,5} | {1,2,5} | {1,4,5} | {1,4} | 0 {2} {2,6}
g {6} {1’5} {1’5} {1’4’5} {1’4} 0 0 {6}
h 0 {1, 5} {1,5} | {1,4,5} | {1,4} | 0 0 0

As a result of the modification of R, ¢ now dominates b. Figure 5 shows
the new concept lattice L(R') and the associated Galois sub-hierarchy; Fig-
ure 6 gives the new property domination relation.

Let us now delete element (b,1) from the previous relation R'.

New relation R" obtained:

a|blc|d|le|flg]|h
1 X | X
21 X | x| X X | X
3| x| x X | X | %
4 X | X
5 X | X | X
6| X X

11

ah x 236

abgh x 23

abfgh x 3

ad

b x 1235

bcx 125

d x 145

bed x 15
abcgh x 2

N/bcdexl

0

dex14

{ah.6}

{99}

{f.3}

{b.g}

{c.2}

{22

{d.g}

{ed}

{25}

{a.1}

Figure 5: New concept lattice L(R') and the associated Galois sub-hierarchy
obtained when adding (b, 5) to relation R of Example 2.1.

Line 1 contains non-crosses a, f, g, h and crosses c,d, e. 1 must be deleted
from the lists of (b,a), (b, f), (b, g) and (b, h), and added to the lists of (c,b), (d, b)

and (e, b).
New domination table obtained:

a b c d e f g h
a 0 {4,5} | {1,5} |{1,4,5} | {1,4} | 0 0 0
b {6} 0 {1} {1,4} [{1,4}]| 0 0 {6}
c | {36} {3} 0 {4} {4 | {3}] {3} | {3,6}
d |{2,3,6} | {2,3} {2} 0 0 {3} | {2,3} | {2,3,6}
e |42,3,6} | {2,3,5} {2,5} {5} 0 {3} 1 {2,3} | {2,3,6}
f {2,6} | {4,2,5} | {1,2,5} | {1,4,5} | {1,4} | O {2} {2,6}
g {6} {A4,5} | {1,5} | {1,4,5} | {1,4} | 0 0 {6}
h 0 {4,5} | {1,5} |{1,4,5} | {1,4} | 0 0 0

After this second modification of R, c does not dominate b any longer.
Figure 7 shows the new concept lattice and the associated Galois sub-relation.
The property domination relation reverts to its original form, given by
Figure 3, even though the lattice is larger and structurally significantly dif-

ferent.

5 Conclusion

We have shown a new approach to modifying significant information we
need to extract from a concept lattice structure, with an efficient updating

12

{ah} b d
AN

D

———Q

Figure 6: Domination relation obtained when adding (b, 5) to relation R of
Example 2.1.

0
ah x 236 b x 235 c x 125 d x 145
abgh x 23 bc x 25 cd x15 de x 14
{ah6} {b.z} {c2} {d.z}

abfghx 3 abcgh x 2 bed x5 cdex 1
{g9.0} {ed}

[} {f.3} {72} {&.5} {71}

Figure 7: New concept lattice £L(R") and the associated Galois sub-hierarchy
obtained when deleting (b, 1) from the new relation R’ of Example 4.3.

13

technique, based on a new graph-based data structure which enables us to
avoid re-computing the entire structure.

This updating technique could be extended to efficiently constructing
the initial domination table for a given relation which is very dense, by first
considering the relation with only a diagonal of zeroes, which describes a
graph with no domination, and then removing elements from this until the
desired relation is obtained.

Conversely, the principle of domination table could also be used to model
a relation into respecting a given sub-hierarchy, with particular desirable
relationships between classes.

Acknowledgment

We thank the referees for their very interesting questions and suggestions.

References

[1] M. Barbut and B. Monjardet. Ordre et classification. Classiques Ha-
chette, 1970.

[2] A. Berry and J.-P. Bordat. Orthotreillis et séparabilité dans un
graphe non-orienté. Mathématiques, Informatique et Sciences Hu-
maines, 146:5-17, 1999.

[3] A. Berry, J.-P. Bordat and O. Cogis. Generating all the minimal sep-
arators of a graph. International Journal of Foundations of Computer
Science, 11:397-404, 2000.

[4] A. Berry and A. Sigayret. Representing a concept lattice by a graph.
Workshop on Discrete Mathematics for Data Mining, Proc. 2nd SIAM
Workshop on Data Mining, Arlington (VA), April 11-138 2002.

[5] G. Birkhoff. Lattice Theory. American Mathematical Society, 3rd Edi-
tion, 1967.

[6] J.-P. Bordat. Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques, Informatique et Sciences Humaines, 96:31-47, 1986.

[7] J.-B. Chen and S. C. Lee. Generation and Reorganization of Subtype
Hierarchies. Journal of Object Oriented Programming, 8(8), 1996.

14

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Godin. Complexité de Structures de Treillis. Annales des Sciences
Mathématiques du Québec, 13(1):19-38, 1989.

R. Godin and H. Mili. Building and Maintaining Analysis-Level Class
Hierarchies Using Galois Lattices. Proceedings of ACM OOPSLA’93,
Special issue of Sigplan Notice, 28(10):394-410.

R.Godin, R. Missaoui and A. April. Experimental Comparison of Nav-
igation in a Galois Lattice with Conventional Information Retrieval
Methods. International Journal of Man-Machine Studies, 38:747-767,
1993.

R. Godin, E. Saunders and J. Gecsei. Lattice Model of Browsable Data
Spaces. Information Sciences, 40:89-116,1986.

M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, New York, 1980.

M. Hager. On Halin-Lattices in Graphs. Discrete Mathematics, 47:235—
246, 1983.

R. Halin. Lattices of cuts in graphs. Abh. Math. Sem. Univ. Hamburg,
61:217-230, 1991.

M. Huchard, H. Dicky and H. Leblanc. Galois lattice as a framework
to specify building class hierarchies algorithms. Theoretical Informatics
and Applications, 34:521-548, 2000.

J.L. Pfaltz and C.M. Taylor. Scientific Knowledge Discovery through
Iterative Transformation of Concept Lattices. Workshop on Discrete
Mathematics for Data Mining, Proc. 2nd SIAM Workshop on Data
Mining, Arlington (VA), April 11-13 2002.

N. Polat. Treillis de séparation des graphes. Can. J. Math., vol. XX VIII,
No 4, pp. 725-752, 1976

G. Sabidussi. Weak separation lattices of graphs. Can. J. Math.,
28:691-734, 1976.

P. Valtchef, R. Missaoui, and R. Godin. A Framework for Incremental
Generation of Frequent Closed Item Sets. Workshop on Discrete Math-
ematics for Data Mining, Proc. 2nd SIAM Workshop on Data Mining,
Arlington (VA), April 2002.

15

[20] A. Yahia, L. Lakhal and J.-B. Bordat. Designing Class Hierarchies of
Object Database Schemes. Proceedings 13e journées Bases de Données
avancées (BDA’97), 1997.

[21] M. J. Zaki, S. Parthasarathy, M. Ogihara and W. Li. New Algorithms
for Fast Discovery of Association Rules. Proceedings of 3rd Int. Conf.
on Database Systems for Advanced Applications, April 1997.

16

