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Abstract

In this paper, we present a new relationship between concept lattices and graphs. Given
a binary relation R, we define an underlying graph Gr, and establish a one-to-one corre-
spondence between the set of elements of the concept lattice of R and the set of minimal
separators of Gg.

We explain how to use the properties of minimal separators to define a sublattice,
decompose a binary relation, and enumerate the elements of the lattice.

1 Introduction

One of the important challenges in data handling is generating or navigating the concept lattice of a binary
relation.

Concept lattices are well-studied as a classification tool (see [1]), are used in several areas of Database
Managing, as studying Object-Oriented Databases (see [28]), inheritance lattices (see [14]), and generating
frequent sets, and are a promising aid for the rapidly emerging field of data mining for biological databases.

In this paper, we present a new paradigm for describing and understanding concept lattices, by equating the
closed sets of the lattice with the set of minimal separators of an underlying graph.

The notion of minimal separator, introduced by Dirac in 1961 to characterize chordal graphs (see [10]), has
been studied extensively during the past decade on non-chordal graphs (see [17], [16], [21], [3], [27]), and has
yielded many new theoretical and algorithmical graph results.

We will apply some of these results to analyzing and decomposing a binary relation and the associated
concept lattice.

Because of space restrictions, we will mostly limit ourselves to presenting our basic techniques and results,
and to illustrating the mechanisms involved on a running example. The proofs of our results do not present
great difficulties and are detailed in the full version.

The paper is organized as follows:

Section 2 gives some very brief preliminary notions on both concept lattices and graph separators, and
presents our running example. For undefined notions, the reader is referred to the classical works of [8] and
[12]. In Section 3, we define the underlying graph Gg of a binary relation R, describe some of its properties,
and explain how it relates to the concept lattice £L(R). In Section 4, we define a sublattice by making into a
clique a minimal separator of the underlying graph. Section 5 shows how to use a clique minimal separator
to decompose a binary relation. Section 6 addresses the issue of generating all the elements of the lattice
efficiently.
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2 Preliminaries

2.1 Concept lattices

Given a set P of "properties" or "attributes" (which we will denote by lowercase letters) and a set O of
"objects" or "tuples" (which we will denote by numbers), a binary relation R is a subset of the Cartesian
product P x O. A closed set of R, also called a maximal rectangle of R, is a sub-product A x B C R
such that Vz € O — B,3y € A|(y,z) ¢ R, and Vz' € P — A,3y' € B|(z',y') ¢ R. For a given closed set
A x B, A is called the intent of the rectangle, B is called the extent. Element () x O is called the bottom
element, and P x () is called the top element. A path from bottom to top is called a maximal chain of
the lattice. Note that there is, in general, an exponential number of elements in a concept lattice.

Example 2.1 P = {a,b,c,d,e, f}, O ={1,2,3,4,5,6}. Binary relation R:

alblc|d|e|f
1 X | x| X

2| x| x|x

3|1 x|x X
4 X | x
5 X | x

6| x

be x 12 and abf x 3 are maximal rectangles of R. bc is the intent of rectangle bc x 12, and 12 its extent.

The concept lattice (also called Galois lattice) £L(R) of binary relation R is the Hasse diagram (transitivity
arcs are omitted) of the partial ordering of all maximal rectangles (also called elements of the lattice) by
inclusion on the intents. An element A’ x B’ is said to be a successor of element A x Bif A C A’ and
there is no intermediate element A” x B” such that A C A” C A'. The successors of the bottom element are
called atoms.

On our example, a x 236 < ab X 23 < abf x 3.

ab x 23 and be x 12 are not comparable. ab x 23 is a successor of a x 236, a x 236 is a predecessor of ab x 23.
The atoms of L(R) are: a x 236,b x 123,¢ x 125 and d x 145.

(0 x 123456, b x 123,bc x 12, abe x 2, abedef x §) is a maximal chain of the lattice.

2.2 Graphs and graph separators

Let G = (V, E) be an undirected graph (V' is the vertex set, |[V| = n and E C (V x V) is the edge set,
|E| = m). For X C V, G(X) denotes the subgraph induced by X in G. The neighborhood of vertex z
(the set of vertices y such that xy is an edge of E) is denoted by N(z), and if zy is an edge of E, we say

that = and y see each other. For X C V, N(X) = U, x(N(z)) — X.

The basic notion we use is that of minimal separator.

A separator S of G is a subset of vertices such that subgraph G(V — S) is disconnected. S is called an
xy-separator if z and y lie in different connected components of G(V — S); S is called a minimal xy-
separator if S is an zy-separator and no proper subset of S separates z from y. Finally, S is called a
minimal separator if there is some pair {z,y} of vertices such that S is a minimal zy-separator.

Property 2.2 Let G = (V, E) be a graph, let S be a vertex set. S is a minimal separator of G iff there are
at least two distinct connected components C1 and Co of G(V — S) such that N(C1) = N(C2) =S (Ci and
Cy are called full components).
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Figure 1: Concept lattice L(R) of relation R of Example 2.1.

There are several operations on graphs which will enable us to simplify the search for minimal separators.

The first one is the removal of the universal vertices (a vertex is said to be universal if it sees all the other
vertices of the graph).

Property 2.3 A vertex is universal iff it belongs to all the minimal separators of the graph.

As a consequence of this property, if X is the set of universal vertices of G, then S is a minimal separator of
G(V — X) iff SU X is a minimal separator of G. The set of universal vertices of a graph can be found in
linear (O(m)) time.

The second simplification concerns maximal clique modules.
Definition 2.4 A subset X of vertices is said to be a clique module iff Vr,y € X,{z}UN(z) = {y}UN(y).

Belonging to a maximal clique module defines an equivalence relation, and contracting a maximal clique
module by replacing it by a single representing vertex does not modify the set of minimal separators of the
graph (see [4]). In the rest of this paper, we will refer to maximal clique modules as if they were vertices.
For example, the degree of a maximal clique module X will be |[N(X)].

The partition into maximal clique modules can be computed in linear time using Hsu and Ma’s partition
refinement algorithm (see [15]).

A separator S is called a clique separator if S is a separator and G(S) is a clique; we will say that we
saturate a non-clique separator if we add all missing edges necessary to make S into a clique.

We will also need the notion of minimal triangulation, which is the process of embedding a graph into a
chordal graph by the addition of an inclusion-minimal set of edges.

Definition 2.5 ([23]) Let G = (V, E) be a graph; H = (V,E + F) is a minimal triangulation of G if H
is chordal and VF' C F, graph (V,E + F — F") fails to be chordal.



Figure 2: The underlying graph G of the concept lattice £(R) from Example 2.1.
3 Definition of the graph underlying a binary relation

3.1 Definition of Gy

We will use a binary relation R defined as in Section 2 as a subset of P x O to construct graph Gg as follows:

e The vertex set of Gg is PU O.
e Gr(P) and Gg(O) are cliques.
e For a vertex z of P and a vertex y of O, there is an zy edge in Gg iff (z,y) is not in R.
Note that only the edges between a vertex of P and a vertex of O are relevant and need not be traversed when

doing graph searches to find minimal separators. We will omit the internal clique edges in our complexity
considerations; thus m will refer to the size of the complement of R, i.e. |PUO| — |R)|.

3.2 Properties of Gj
By construction, the graph Gg we have just described belongs to the class of co-bipartite graphs. The

graphs of this class have several remarkable properties, such as being AT-free and claw-free. This class is
also hereditary: any subgraph of a co-bipartite graph is again co-bipartite.

This ensures several nice properties on the minimal separators, which make them easier to handle than on
more general graphs:

Property 3.1 Let G be a co-bipartite graph constructed on clique sets P and O; then every minimal sepa-
rator S of G has exactly 2 connected components, C; and Cs, the first of which contains only vertices of P
and the second only vertices of O.

We can also derive the following from Property 2.2:

Property 3.2 Let S be a separator of a co-bipartite graph G = (V,E), let A and B be the components
defined by S. Then S is a minimal separator iff Ve € S,Ja € A,3b € B,za € E and xb € E.

We are now ready to prove our main result:

Main Theorem 3.3 Let R be a binary relation, R C (P x O), let G = (V,E) be the corresponding
co-bipartite graph. Then A X B is a closed set of R iff S =V — (AU B) is a minimal separator of Gg.

Proof: Let R be a binary relation, Ggr = (V, E) the corresponding co-bipartite graph.



1. Let A x B be a closed set of R, let S =V — (AU B). We claim that for each a € A,b € B, Sis a
minimal ab-separator of Gg. First of all, S is an ab-separator: if there was an edge ab in Gg, then by
definition (a,b) would not be in R. Next we will prove that S is minimal: suppose that it is not; by
Property 3.2, w.l.o.g. there must be some vertex x € S such that = sees no vertex of B, which means
that Vy € B, (z,y) € R; Az x B would be a rectangle of R, which contradicts the minimality of A x B.

2. Conversely, let S be a minimal separator of G, let A and B be the connected components of G(V —S).
Since Vz € A,Vy € B,zy ¢ E, we can conclude that (z,y) € R, and that A x B is a rectangle of R.
Suppose A x B fails to be maximal: w.l.o.g. 3z € O — B,Vy € A,(y,z) € R. In Gg, z will see no
vertex of A, so by Property 3.2, S fails to be minimal.

O

Using Property 2.2, it is easy to show that, in addition, the following holds:

Property 3.4 Let A x B be a closed set of R, let S =V — (AU B); then S = N(A) = N(B).

Definition 3.5 Let A x B be a closed set of relation R, let S =V — (AU B). We will say that minimal
separator S represents closed set A x B.

We can now reformulate Property 3.1 with Property 2.2 as the following:

Property 3.6 Let A x B be a closed set of relation R, let S be the minimal separator representing A X B.
Then in Gg, N(A) = N(B)=S.

Example 3.7

In Figure 3, S = {a,d,e, f,3,4,5,6} is a minimal separator of graph Gg of Figure 2, separating C1 = {b, c}
from Cy = {1,2}, and be x 12 is a closed set of R and an element of L(R). In Gr, N({b,c}) = N({1,2}) = S.

Figure 3: Separator S = {a,d,e, f,3,4,5,6} of Gg.

Note that we can deduce from Theorem 3.3 that a co-bipartite graph may have an exponential number of
minimal separators, since a concept lattice can have an exponential number of elements.

In [4], the notion of moplex was introduced as a general definition of the extremity of a graph (a moplex is
defined as a maximal clique module, the neighborhood of which is a minimal separator of the graph; see [6]
for an application of this concept). It is interesting to see that the moplexes of the underlying graph Ggr
correspond precisely to the non-trivial extremities of the lattices: its atoms and co-atoms:

Property 3.8 Let R be a binary relationship, let L(R) be the corresponding concept lattice, let Gr be the
underlying graph. If A x B is an atom of L(R) then A is a moplex of Gg; if A x B is a co-atom of L(R),
then B is a moplex of Gg; there are no other moplexes in Gg.



4 Selecting a sublattice by saturating a minimal separator

The process of saturating one minimal separator causes a number of other minimal separators to disappear
from the graph; this process was first introduced by [17], is studied in [22] and its mechanism is described
and used in [6]. In this Section, we will examine what happens to the lattice when a minimal separator of
the underlying graph is saturated.

Definition 4.1 ([17]) Let S and T be two minimal separators of graph G; T is said to cross S if there are
two different connected components C1 and Cy of G(V — S) such that TN C1 # 0 and TN Cy # 0.

Property 4.2 [22] Let G be a graph, let S be a minimal separator of G, let Gs denote the graph obtained
from G by saturating S; then T is a minimal separator of G iff T is a minimal separator of G and T does
not cross S in G.

We will use this result on our underlying graph Gg: saturating a minimal separator S of G defines a new
relation R, in which for each zy edge added to S the corresponding pair (z,y) is deleted from R.

Property 4.3 Saturating a minimal separator of a co-bipartite graph results in a co-bipartite graph.

Theorem 4.4 Let R be a binary relation, and Gg the corresponding underlying co-bipartite graph. Let S
be a minimal separator of Gr, representing the closed set A x B in the concept lattice L(R), let R' be the
new relation obtained. Then the concept lattice L(R') is a sublattice of the original lattice L(R), and L(R')
can be obtained from L(R) by removing all the elements which are not comparable to A X B.

We thus define a process which allows us to restrict a binary relation R to a smaller relation R' C R such
that L(R') is a sublattice of L(R). Note that restricting a relation in an arbitrary fashion will not, in general,
yield a sublattice, and can even cause the lattice to be much bigger.

Gr ¢ R oo > LL(R)
minimal separator S «---------- - closed set Ax B |
sturate S i | select sublattice
| I
V N

Gr >R > LD (R)

Example 4.5 Let us saturate separator S = {a,d,e, f,3,4,5,6} of Gg, representing closed set bc x 12.
Edges a3,a6,d4,d5,e4 and f3 will be added.

New relation R’ defined:

a|blc|d|e|f
1 X | x| X
2|1 x| x| x

3 X

4

5 X

6

Figure 4 gives the sublattice £(R') obtained.
Saturating S has caused closed sets a x 236, ab x 23,abf x 3,d x 145 and c¢d x 15 to disappear from the lattice.
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Figure 4: L(R')

Remark 4.6 This process can be repeated on a second separator still represented in the sublattice obtained,
and so forth. This may be very useful when the concept lattice is exponentially big, because it allows the
user to examine only a part of it, which can be made as small as desirable by reiterating a minimal separator
saturation step as many times as necessary.

We will conclude this section by discussing the minimal triangulations of Gr. We will first remark that it is
easy to use the results in [19] and [21] to show that all the minimal triangulations of Gg are proper interval
graphs, since Gg is both AT-free and claw-free.

Recent work has shown that minimal separators could be used to compute a minimal triangulation (see [17],

[22], [2])-

Property 4.7 [3] The process of repeatedly choosing a minimal separator which is not a clique, and satu-
rating it, until oll minimal separators are cliques, yields a minimal triangulation of the input graph in less
than n steps.

Property 4.8 Computing a minimal triangulation of Ggr by repeatedly saturating a non-clique minimal
separator will result in a proper interval graph G” and a corresponding relation R” such that L(R”) is a
mazximal chain of L(R).

Remark 4.9 A mazimal chain has less than min(|P| + |O|) elements, which ensures that the process de-
scribed in Remark 4.6 can always result in a polynomial-sized sublattice.

Property 4.10 To each minimal triangulation of Gr uniquely corresponds a maximal chain of L(R) and
vice-versa.

5 Using clique separators to decompose a binary relation and its
lattice

In [26], Tarjan introduces the decomposition by clique separators of a graph. This process is defined by
repeatedly copying some clique separator S into each of the components it defines. This decomposition
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Figure 5: Lattice obtained by computing a minimal triangulation of graph G of Figure 2.

is proved to be unique and optimal when only clique minimal separators are used (see [18]), and can be
described by the following general decomposition step:

General Decomposition Step 5.1 Let G be a graph, let S be a clique minimal separator of G, defining
components Cy,Cs,...C. Replace G with G; = G(C1 UN(C1)) and G2 = G(C2 U N(C5)).

This decomposition has the remarkable property that it distributes the minimal separators into the subgraphs
it defines.

Property 5.2 Let G be a graph, let S be a cligue minimal separator of G, let S(G) be the set of minimal
separators of G. After a decomposition step by S, the elements of S(G) — {S} are partitioned into the
subgraphs obtained.

In the graph Gg defined by binary relation R, a clique minimal separator S defines only two components,
C; C P and Cy C O, which are both full components, so that N(C;) = N(C3) = S. Moreover, the vertices
of SN P are universal in graph Gg(Cy U S) and according to Property 2.3, they convey no information on
minimal separators and can be removed from the graph. The vertices of S N O are likewise universal in
Gr(C2US), and can be removed. We will define the following simplified decomposition step:

Decomposition Step 5.3 Let Gg be the underlying graph of relation R, let S be a clique minimal sepa-
rator of Ggr, defining components C1 C P and Cy C O. Replace G with G1 = Gr(C1 U (SN O)) and
Gy = GR(CQ U (SﬂP))

As a consequence of Property 5.2, computing the set of minimal separators of the original underlying graph
GRr can be done separately on the smaller subgraphs defined by a decomposition step by a clique minimal
separator: Ty will be a minimal separator of G, iff T1 U (S N P) is a minimal separator of Gg, T> will be a
minimal separator of Go iff To U (S N O) is a minimal separator of Gg. Thus the closed sets of R can be
computed separately on the sub-relations defined.

Chances are the resulting sub-relations will be much smaller than the original one, and thus the queries on
them much less costly.



Example 5.4 Let us use the relation R' of Example 4.5, the underlying graph G'; of which contains clique
minimal separator S = {a,d,e, f,3,4,5,6}. The corresponding lattice is given in Figure 4 in Section 4. S
defines components C; = {b,c} and Cs = {1, 2}, thus representing the closed set be x 12. SNO = {3,4,5,6}
and SNP = {a,d,e, f}.

A clique minimal separator decomposition step using S will yield G; = Gr(C1U(SN0O)) = Gr ({b,¢, 3,4,5,6})
and Gy = Gr(C2 U (SNP)) =Gr({a,d,e, f,1,2}).

The corresponding sub-relations obtained are the following:

b|c
X a|d|e|f

O U x| L
[y
o]

With a linear-time pass of G it will become clear that vertices 4 and 6 have also become universal and can
be removed. Figure 6 shows the very restricted graph G finally obtained. The minimal separators of G
are {b,3} and {¢, 5}, corresponding to closed sets b x 3 and ¢ x 5. In the global graph, putting component
Cy = {1,2} back in will yield at no extra cost closed sets b x 123 and ¢ x 125 of the original lattice. These
are precisely the predecessors of be x 12.

In G», vertex f has become universal, and a linear-time pass using the algorithm of Hsu and Ma (see [15])
will show that vertices d and e now share the same neighborhood, and can be contracted without loss of
information on the minimal separators of the graph.

The resulting graph GY, is also restricted to four vertices, and is shown in Figure 6. Its minimal separators
are represented by a x 2 and de x 1, which, once we have put C; = {b,c} back in, defines the closed sets
abe x 2 and bede x 1, which are the successors of be x 12.

Figure 6: Graphs G and G, obtained after one decomposition step by clique minimal separator on G'.

Note that in a co-bipartite graph, the presence of a clique minimal separator can be tested for in linear time,
and the decomposition can be computed in the same time.

Combining these results with those described in Section 4, we are able to choose a minimal separator rep-
resenting a group of objects or properties, saturate it, and extract the sub-relation corresponding to the
successors of this minimal separator.

6 Generating the closed sets

6.1 Generating and storing the closed sets

Recent work has been done on the efficient generation of the closed sets defined by a binary relation (see
[11], [5], [20]), both when one wants to store all the closed sets, and when one simply wants to encounter all
of them at least once.



In parallel, recent work has been done to generate all the minimal separators or all the minimal zy-separators
of a graph (see [25], [16], [7], [24]).

As an illustration of the use that can be made of our new paradigm, we will show how we can easily match
the complexity of generating and storing the closed sets obtained by [20], which is O(n?) per closed set, by
using the work of [24], who claims a complexity of O(n?) time per minimal zy-separator to generate and
store them.

Let us use our underlying graph G g as described in Section 3, and add two simplicial vertices ¢ and y: x is
a neighbor of all vertices of P, y of all vertices of O.

The set of minimal separators of this new graph is exactly {P} U {O} US(GR), where S(GRg) is the set of
minimal separators of Gg. Thus using Shen’s algorithm and our graph representing relation R, we can easily
generate and store all the closed sets of R in O(n?) time per closed set, noting that [24] claims a better space
complexity than [20].

6.2 Generating the closed sets without storing them

We will now propose an algorithmic outline which computes the closed sets while storing only a polynomial
number of them.

We will need to define the concept of domination in a graph:

Definition 6.1 A vertex x is said to be dominating (or strongly dominating) in graph G if there is some
vertex y such that N(y) C N(z). We will say that a mazimal clique module X is dominating if there is
some verter y & X such that Vz € X, N(y) C N(z). Conversely we will say that a vertex or maximal clique
module is non-dominating if it is not dominating.

For complexity considerations, we need to remark that a maximal clique module X of minimum degree is
non-dominating, and that finding the set of vertices which dominate a given maximal clique module X can
be done in linear time by checking for universal vertices in N(X).

Our approach is based on the following property inspired from [5]:

Property 6.2 Let Gg be the underlying graph of relation R, let X C P be a mazimal cligue module of Gg;
then N (X) represents an atom, with intent X, iff X is non-dominating.

In Example 2.1, the set of maximal clique modules is exactly the set of vertices. Vertices e and f are dominat-
ing (e dominates d and f dominates both a and b). N(a) = {b,c,d,e, f,1,4,5}, N(b) = {a,c,d, e, f,4,5,6},
N(c) ={a,b,d,e, f,3,4,6},and N(d) = {a,b,c,e, f,2,3,6}, which defines the atoms of L(R) as: a x 236, b x
123,¢ x 125 and d x 145.

Our strategy for finding the set of non-dominating maximal clique modules of G g is the following;:

. Compute in linear time all the maximal clique modules of Gg and contract them.
. Choose a vertex x of minimum degree.

. Compute in linear time the set of vertices which dominate z.

= W N

Remove z and the vertices which dominate z from the graph and go back to Step 2.

This requires O(m) time per non-dominated maximal clique module computed.

In order to compute the rest of the elements, we will then go on recursively to compute the sublattice of which
each atom in turn is the bottom element, by saturating the corresponding minimal separator. This requires
memorizing only the set of not yet processed non-dominating maximal clique modules and the corresponding
graph’s vertex set, which takes O(n®) space, as there are less than n atoms in any given graph, and as the
height of a lattice cannot exceed n.
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In the worse case, generating an element A x B requires O(m|A|). The total time complexity required is
in O(nm) per element, which matches the corresponding best time algorithm for generating the elements
without storing them, proposed by Ganter (see [11].

7 Conclusion

Though specific problems such as minimizing the number of times a database is accessed remain to be
translated in terms of graph separators, we have presented a new approach to answering queries on the
concept lattice of a binary relation, which uses a rapidly growing toolbox: the theory of minimal separation
in undirected graphs.

We can expect that this approach will create a bridge between the two fields of concept lattice theory and
undirected graph theory, and yield new results in both fields.

Moreover, we feel that since the minimal separators of a graph seem to describe the structure of the graph,
we have contributed to show a strong semantic aspect behind the closed sets of a binary relation.

Several open questions arise from the issues discussed in this paper.

It is not known whether the set of non-dominant vertices can be computed in less than linear time per vertex,
but improving this would also improve the complexity of the algorithmic process described in Subsection
6.2.

Likewise, efficiently computing the set of minimal separators which cross a given minimal separator S would
result in a better generation algorithm for closed sets.

We have illustrated the use of clique minimal separator decomposition, but other minimal separator-preserving
decompositions would directly yield decompositions of a binary relation and of the associated lattice. Con-
versely, other known decompositions of binary relations might lead to new hole and anti-hole preserving
graph decompositions, an important open question in the context of perfect graphs.

Finally, it would be interesting to characterize the binary relations which define a polynomial number of
closed sets, or the graphs which have a polynomial number of minimal separators; this might help the users
of databases to maintain manageable binary relations.
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